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Problem formulation

Measurements for describing electromagnetic properties ≡ electromagnetic 
characterization of the sample

Characteristic parameters=adequate condensed description of the sample 

What is directly measured: 

Radio: pulses E(t), H(t), harmonic |E(ω)|, phase(E),|H|, phase(H),

Optics: |E|  (detectors), |E(ω)| (spectrometers, ellipsometers)

All other parameters – strictly speaking retrieved!    

phase(E) – interferometers (retrieval within the tool)

Other  parameters: calculations, software 

Exp.
Source Meas.

Characteristic parameters

Usual material 
characterizators

Proper metamaterial 
characterizators 
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Spectrometers and interferometers

(1) collimating lens, 
(2) polarizer, 
(3) AOTF, (5) polarizer, 
(6) imaging lens, 
(7) slit, (8) coll. mirror, 
(1) input aperture, 
(9) echelle grating,
(10) foc. mirror, (11) mirror, 
(12) Detector matrix

Source

Mirror

Mach-Zender 
interferometer

EXP

Michelson interferometer

Spectrometer
|R,T(λ)|

Phase(R,T(λ))

Spatial spectrum of a beam [1]
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Surface passive structures d<<λ
Art and Nanosensing. 

No EM material characterization needs

Grid (inset) C60 /Si, NanoWires C60 /Si Defect line C60 /Si 

2 nm
”Corral” of Fe atoms/Cu

5 nm

Si (Resist)

ε=εsubstrate 

Surface-bonded molecules – molecular sensing

10 nm

Molecular characterization! 

[2]
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Bulk non-plasmonic nanocomposites. Transparent

Molecular lattice d=3.5 nm Colloid of Mn nanoparticles
TiO2
nanoparticles

Knotted
CNT

[3]
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Diffraction gratings (d>λ), mesoscopic layers (d<λ)

Au

Chromium

Au

[4]

600 nm

Chromium
Au

Ag

Nanoantenna array (2003) 

[5]

[6]
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Plasmonic mesoscopic layers. Examples

Resonant nanoclusters 
/ Si substrate 

Porous plasmonic layer

Au - Ag nanocavities
/Si substrate

Plasmonic chiral film
(out of scope)

a=160 nm

[7]

[8]

[9] [10]
[11]

U-shaped SRR layer
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Scattering (non-transparent) media including 
plasmonic ones

200 nm
Random CNT

Clustered nano-raspberries

Clusters  of plasmonic nanoparticles in liquid > 500 nm 

[12]

[14]

[13]
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Bulk plasmonic arrays,  d<<λ
1)g~d Dipole materials. 2 g<<d Photonic crystals

Bulk lattices: Au particles 4 nm
Colloids of Au (Ag) 
NanoParticles

Multilayer/random
Ag or Au NanoParticles

Regular
Random

100 nm

Colloids of Au  
Core-shell 
Nanoclusters

Alternating Ag 
Particles
10+5 nm

200 nm

Dipole MTM

Plasmonic 
Photonic 
Crystal

Scattering 
Media with 
Resonant
Absorption

[15]

[15, 67]

[16] [17]

[18]

Ag 
Particles
200 nm
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Nanostructured photonic crystals (d~>λ) 

1 μmOpals

Inverse opals

Opt. Fishnets

1 μm

1μm

Usual 2D crystals

TiO2

SiC

Ag

Au

[21]

[19]

[19]

[20]
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Ultrathin island films

N<5: Mesoscopic material

N>5: Plasmonic scattering medium

Au /silanized glass
[66]
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Vertically aligned nanorods(nanotubes)

Plasmonic (gold) nanorods

200 nm

Carbon NT

Modest slow-wave factor

Uniaxial dielectric

(no spatial dispersion) 

Huge slow-wave factor (>100)

Wire medium 

(a kind of photonic crystal) 

Other vertically aligned 
nanorods (InP, TiO2 etc)

[22] [23]

[24]
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Bulk magnetic nanostructures. Examples

1. FM multilayer/polymer

2.  NiZn particles and other 
ferrite colloids

3.  Nanostructured ferrites 
(Co island films, Bi-doped 

garnets)

Optical Range: Sufficient transparence
(similar to crystalline hexaferrite) 

Ηdc≠0: ε ≠ ε2  

1. Ηdc≠0: μ ≠ 1

Optics (1-3):

Radio (2+3):

2. Ηdc≠0: Spin waves 

4.  Nanomagnets
Hdc=0 Radio: μ ≠1. 
Optics: ε=εh

[25]
[26]
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Classification of nanostructured materials (NSM) by 
their linear EM properties. Text

Bulk passive structures (N>4-5 Unit Cells)

Optically dense bulk structures d<<λ 

Non-resonant materials: 

Non-EM applications, EM applications,
Thick films, optically large samples, Thin films and island films, 

Radiofreq. Mag. Med. and Nanomagnets, Magneto-Optical Media

Plasmonic and polaritonic MTM: 

Dipole arrays, Multipole arrays, Resonant Photonic Crystals, Resonant scattering  media

Optically sparse bulk structures d~>λ

Nanostructured Photonic Crystals, Scattering media (resonant and non-resonant)

Surface passive structures (N<4-5 Unit Cells)

d<<λ Dense gratings d~>λ Diffraction gratings, 

Non-resonant, Resonant 

Planar MTM, Vertically Aligned Nanorods

Active nanostructures (of quantum dots and wires, dye-doped nanoporous and liquid 
crystals matrices, etc). Out of scope
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Classification of NSM by their linear EM properties. 
Chart

Passive NSM II. Nanostr. 
Surfaces

I. Nanostr. 
Bulk mat.

I1. Optically 
dense

I2 Optically 
sparse

I11. Constituents 
non-resonant 
in optics 

I12. Constituents 
resonant 
in optics

I11a. Non-EM
applications

I11b. EM
applications

I11a1
Opt.
thick

I11a2
Opt.
thin

I11b1
Rad.
Mag.
Comp.

I11b2
Mag. 
Opt.
Comp.

I12a
Dipole 
arrays

I12b
Res.
Phot.
Cryst.

I12c
Res.
Scatt.
Media

I21. NS 
Photonic Crystals

I22. NS 
Scattering Media

I21a=I12b
Res.
Phot.
Cryst.

I21b
Constit.
Non-
Res. 
In 
Optics

I22a
Constit.
Non-Res. 
In 
Optics

I22b=I12c
Res. 
Scatt. 
Media

II1. Opt. Dense 
gratings

II1. Opt. Sparse
gratings

II11. Constit. 
resonant 
in optics

II11. Constit. 
Non-resonant 
in optics

II11a. Planar 
constituents

Regular arrays of vertically 
aligned rods, tubes etc.

II11a. Constit. 
Non-resonant 
in optics

II11b. Constit. 
resonant 
in optics

I12c. Multipole arrays
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Explanation of the chart

Metamaterials

Scattering (non-transparent) media 
Sample parameters: QE, QA, QS 

Bulk uniform concentration media 
Material parameters: ε,μ.
(Bianisotropic and bulk multipole arrays are out of scope)  

Photonic crystals/EBG
Material parameters: stopbands (bandgaps).
Additionally: Brillouin dispersion diagram, Fresnel isofrequency surfaces.

Diffraction gratings
Characteristic parameters: D(λ,m), Δλ(m), Inorm.(λ,m)

Mesoscopic layers
Sample parameters: QE, QA, |R(λ,θ)|, |T(λ,θ)|
(many-layer structures are out of scope)



Helsinki University of Technology - TKK    Department of Radio Science and EngineeringPage 17

Bulk layers and bars characterization. 
Nicholson-Ross-Weir (NRW) technique

Radio rangeS11, S21       n, γ= √μ/εNetwork analyzer

10-100λ

1 2

Detector
(Spectrometer) +
Interferometer

100 -1000 μm

Nanostructured 
material

Ring sample

Known 
substrate

History: [36]

Bar or 
layer 
sample

Layer sample

R
T

[27-29]

[30-35]

Optics
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Bulk samples characterization. 
Other radio techniques 

Dube-Lanagan (1984)
Complements NRW for 
Anis. Magnetodiel.

1. Hakki-Coleman method
(1946) 2. Cylindrical cavity method (specimen-rod)

3. Rectangular cavity method (specimen- bar)
(many people in 1950s)

TEn11

Resonator techniques: only permittivity (precisely) 

Specimen-resonator

[37-40]
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Bulk samples radio characterization. 
Unusual resonator techniques 

Specimen -Ring TE011 resonatorModified cavity methods

Specimen - Layer in a split-disk (quasi-TE011) resonator Specimen – Whisp. Gal. resonator

[37-40]



Helsinki University of Technology - TKK    Department of Radio Science and Engineering

Characterization of bulk media using wedges

Deviation angle 
shows the  
Energetic 
Velocity VE.
Low loss: VE=Vg

Only detectors 
need to detect the 
Negative Refraction.

ε and μ can be 
extracted from 
R and T

[41]
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Magnetic NSM: characterization in the radio range

R+
T+

T- R-

”Two-side
NRW”

Characterizations in situ, e.g. coplanar and microstrip isolators

Large metal
plates

Modifications 
of two-side 
NRW

Hdc

[42-46]

[separate list]

[separate list]
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Magnetic samples: experimental characterization in 
the visible

modulator

Tunable. Very high Q

1. Magnetic Kerr constant – (ε2-ε1) [47]
Faraday-Verde constant - gz [48]
2. Brillouin – microwave characteristics: spin waves frequencies [47]

z

Faraday

Kerr

1. 2. 

Brillouin
scattering
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Non-magnetic films experimental characterization

Thin (Nd~<λ) film=bulk medium: N > 4-5

Radio range 
1. Quasi-static method 
2. WaveGuide methods  [49] 

Optical range [50-56, 40]:
a). Known thickness:  
1. Ellipsometry (Drude, 1889) 
2. Abelè method (1950)

b) Unknown thickness h (especially island films):
1. Schopper method (1952) – the same as NRW where h and ε to be found (μ=1)
2. Malé method (1950) – low-loss films: ε and h can be found from |R| and |T|
3. Modern ellipsometry [51-56, 40]  

θΒ1 θΒ2

E E
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Modern film ellipsometry

Most advanced: Variable-Angle-Spectrometric Ellipsometry (VASE) [40]

=r

=1

|rp(λ)|, |rs(λ)|
Angle

Angle

Known h –complex εt, εn for uniaxial films

Transmission ellipsometry [51, 52]. 

Generalized ellipsometry (fully anisotropic specimen, unknown h) - both schemes [54-56]
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Photonic crystals experimental characterization

1. Band-gaps detection [57].
2. For low-loss structures: phase(T) – dispersion along ΓX [58]

beamwidth~(2-5)λ

Detector
(Spectrometer), 
rarely- interferometer

Detector
(Spectrometer)

Detector 
(Spectrometer)

|R|

|R|

|T|, rarely- phase(T)

(For 2D Phot. Cryst.)

3. Dispersion diagaram - almost complete retrieval [59]

Usually - validation 
of simulations! 
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sSisS

FSE

iS

Scattering sample’s experimental characterization: 
absorption and extinction coefficients 

Σ

Ei

Phase(EFS+Ei), Phase(Ei), 
Interferometer

|ES+Ei|, |Ei |.
Spectrometer 

Sometimes additionally: 

[60, 61]
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Experimental characterization of mesoscopic layers

|R|, |T|

Fluorescence enhancement 

Fluorescent layer

Spectroscopic (not complete) 
characterization:

Output parameters: 
1) Averaged Field 
Enhancement vs λ,
2) Local Field 
Enhancement vs λ

Nnonlinear characterization

λres (d, g)

[61-63]

[64]



Helsinki University of Technology - TKK    Department of Radio Science and EngineeringPage 28

Experimental characterization of diffraction gratings

Normal incidence λ>d, oblique incidence λ>2d: 

|R| or |T| (λ). Plasmonic gratings: absorption coefficient (at Wood anomalies)

Normal incidence λ<d, Oblique incidence λ<2d: 

Angular dispersion D(λ, m), where m=±1.. ±[d/λ] grating spectral orders.

3. Free intervals of dispersion Δλ(m). 4. Normalized intensity distribution Imax(λ,m).

Reflecting 
Grating 

m= -1

m= +1

m= +1

m= -1

Transmitting grating

Spectrometers

Incident beam Incident beam

[60]
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What should you take into consideration

Availability of the needed equipment

Previous experience of the equipment 
owners and lab staff in EM 

characterization

Access conditions

Estimate: the class to which your NSM 
belongs
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What kind of equipment?

Radio range:  network analyser

Optics: Spectrometers: |R,T| (ω)

Ellipsometers: polarisation ellipse (VASE – also |R, T| (ω))

Interferometers: phase(R,T)  

Optical radiation sources: laser, emitter + tunable filter, 

Special microscopes (SEM, TEM, AFM, aSNOM etc) : internal geometry

Other: chemical analysis tools (elemental characterization) 

EM charact.  parameters are derivative parameters

A list of the equipment (with some technical data) and a list of these facilities 
hosting institutions can be found at 

Disclaimer: The information has been collected taking into account the expertise of the 
facilities owners in EM characterization and their interest. 
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What kind of expertise is available?
Table 1. Samples (classes and measurement techniques)

This interactive table with filled cells is available at 

http://econam.metamorphose-vi.org/facilities/by-materials-and-samples-types

Materials 
Types Sl

ab
s 
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s 
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s 
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m
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O
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Isotropic materials 
       

Photonic crystals         

Quasicrystals          

Mesoscopic samples        

Bianisotropic        

Anisotropic  
inversion symmetrical 

       

Active materials        

Controllable materials        

Diffraction gratings         

Scattering media         

Other? 
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Claimed expertise See on these laboratories at 
http://econam.metamorphose-vi.org/
facilities/by-laboratories

http://econam.metamorphose-vi.org/
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Service rules

The rules for use of the facilities in terms of expenses 
reimbursement and profit sharing differ from lab to lab:

1. Non-for-profit use only or /and   
2. Non-for-profit use for national institutions or other bodies or 
/and 
3. Commercial use for any external customer

No ready contracts templates. 

Owners prefer to shape contract agreements for each particular 
case.
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Equipment
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Related expertise
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Statistics on the equipment and facilities 
Information collected at the ECONAM website

Number of the referred equipment items:

� Spectrometers:…………………………………24

� Ellipsometers: polarisation rotation…………3

� Interferometers: phase………………………..6

� Radiation sources: …………………………….33

� Microscopes: internal geometry………………36

� Other: ..................................................................4

�

� Number of the contact points: 10

� Number of the samples types combination: 68

� Frequency ranges of expertise: THz, Optical (IR, Visible)
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Suggested experimental characterization 
procedure
1. Check the external geometry and guess the internal geometry of your 

sample;

2. Choose the equipment owners with the corresponding expertise (or
expected expertise) (Table 1.: Samples map on the ECONAM website);

3. Contact the owners and agree the conditions for possible cooperation 
(“Contacts and other information” database on the ECONAM website);

4. Decide what kind of parameters do you want to derive;

5. Agree the procedure of measuring (|R,T|, phases, polarization etc.) for 
your particular sample and source location; 

6. Get the measured data and do post-processing

7. Apply the recommended technique to get desired derivative parameters 
(if there is such a technique).

8. Redo measurements (e.g. in case of iterative techniques) and make 
verification experiment if needed.
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Some cautions for non-EM experts

Some groups do not reveal the important information how do they determine 
proper characteristic parameters and how retrieve them. Usually to protect their 
know-how. Our approach: do not try to reproduce! Determine and post-process 
characteristic parameters yourself. Ask our experts to follow the scientifically 
recommended characterization procedures

http://econam.metamorphose-vi.org

Uf-f! My respect to those who survived this talk

Do not blame those who has aslept 

http://econam.metamorphose-vi.org/
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