Alaín Bossavít Laboratoíre de Génie Électrique de París (CNRS)

bossavit@lgep.supelec.fr

Statics, easy. Full Maxwell, tricky.

Homogenization

What it is,

what kind of justification it requires

The cell problem

actual field = large-scale average + "C-periodic" correction grad φ h $\varphi(A) = \varphi(A')$ A' ("C-periodic") H considered constant $\int \mu \mathbf{H} + \nabla \varphi \mathbf{V}^2$ (i.e., a vector) $=\mu_{\text{eff}} \mathbf{H} \cdot \mathbf{H}$ over the cell

 $div[\mu(H + grad \phi)] = 0$

A better, symmetric, formulation rot $\mathbf{h} = 0$ $\mathbf{b} = \mu \mathbf{h}$ div $\mathbf{b} = 0$ Both b and h C-periodic $\langle b \rangle = B$ $\langle h \rangle = H$ A' that allows Find linear non-trivial solution $\mathbf{B} = \mu_{eff} \mathbf{H}$ relation to exist

As a rule, μ_{eff} is a matrix (3×3)

Some theoretical justification is needed, some convergence result,

like

"when $\alpha \rightarrow 0$, exact solution $h_{\alpha} = H + grad \phi_{\alpha}$ weakly converges to solution h of homogenized problem"

(the one in which μ_{eff} replaces μ_{a}), where "weakly" means that

virtual cell-size $\alpha = \frac{1}{2}$ al actual cell-size μ_{eff} *averages* $\int h_{\alpha} \cdot b'$ and $\int \mu_{\alpha} h_{\alpha} \cdot h'$ converge for all test-fields h', b' So, embed actual problem ("problem P") in family of virtual problems (" P_{α} ", with P one of them, for instance P_1), and prove solution u_{α} weakly convergent to solution u_0 of some problem P_0 , *simpler than* P_1 .* Then solve P_0 .

* Homogenization thus belongs to the larger family of *perturbative* techniques

α often called "small parameter"

Essential: α dimensionless quantity Non-essential: $\alpha = 1$ for actual problem.

Depends on reference value used: here, size of actual cell, but could be any problem-specific length, such as wavelength λ , or size L of the macroscopic device.

Since $\langle \mathbf{u}_{\alpha} \rangle \sim \langle \mathbf{u}_{0} \rangle + \alpha \partial_{\alpha} \langle \mathbf{u}_{\alpha} \rangle \Big|_{\alpha=0}$, what need be small is $\alpha \frac{\partial_{\alpha} \langle \mathbf{u}_{\alpha} \rangle}{\langle \mathbf{u}_{\alpha} \rangle} \Big|_{\alpha=0}$, easy to estimate.

Most often (but not always!), can indeed be proven small (i.e., << 1) when ℓ/λ or ℓ/L << 1, the usual requisites.

Bloch and Fourier

$$\hat{\varphi}(\kappa) = \int d\tau \ e^{-i\kappa \cdot \tau} \varphi(\tau) \qquad \hat{\varphi}_{\kappa}(x) = \operatorname{vol}(C) \ \sum_{\tau} e^{-i\kappa \cdot (\tau+x)} \varphi(x+\tau) \varphi(x) = (2\pi)^{-3} \int d\kappa \ e^{i\kappa \cdot x} \hat{\varphi}(\kappa) \qquad \hat{\varphi}(x) = \frac{1}{(2\pi)^3} \int_{B} d\kappa \ e^{i\kappa \cdot x} \hat{\varphi}_{\kappa}(x)$$

Fourier

Bloch

Intuitively clear, but not so obvious to formalize, connections between them

There is a kind of reciprocal property:

- Bounded family φ^{α} of functions $\mathbb{L}^{2}(\mathbb{R}^{n})$
- Bloch representation $\{\widehat{\phi}_{\kappa}^{\alpha}, \kappa \in B_{\alpha}\}$ of each ϕ^{α}
- Function φ in $\mathbb{L}^2(\mathbb{R}^n)$, its Fourier transform $\hat{\varphi}$

Theorem:

If
$$\lim_{\alpha \to 0} \langle \widehat{\varphi}^{\alpha}_{\kappa}(\mathbf{x}) \rangle_{C_{\alpha}} = \widehat{\varphi}(\kappa)$$
 for all κ
Then $\varphi^{\alpha} \longrightarrow \varphi$ when $\alpha \to 0$
(weak convergence, i.e.,
 $\int dx \ \varphi^{\alpha}(\mathbf{x}) u(\mathbf{x})^{\alpha \to 0} \int dx \ \varphi(\mathbf{x}) u(\mathbf{x}) \ \forall u$)

Lattice T of translations τ leaving μ unchanged

 $\mu > \mu_0$

Bloch decomposition:

$$h(x) = \frac{1}{(2\pi)^3} \int_B d\kappa \ e^{i\kappa \cdot x} \stackrel{\land}{h}_{\kappa}(x), \text{ etc.}$$

rot h = j $b = \mu h$ \implies for each κ , div b = 0

$$(\operatorname{rot} + i \kappa \times) \widehat{h}_{\kappa} = \widehat{j}_{\kappa}$$
$$\widehat{b}_{\kappa} = \mu \widehat{h}_{\kappa}$$
$$(\operatorname{div} + i \kappa \cdot) \widehat{b}_{\kappa} = 0$$

Embed problem in family, indexed on
$$\alpha$$
, with cell C_{α}
 $\hat{h}_{\kappa}^{\alpha}(x) = \operatorname{vol}(C_{\alpha}) \sum_{\tau \in T_{\alpha}} e^{-i\kappa (x+\tau)} h^{\alpha}(x+\tau)$, etc.
 $(\operatorname{rot} + i \kappa \times) \hat{h}_{\kappa}^{\alpha} = \hat{j}_{\kappa}$
 $\hat{b}_{\kappa}^{\alpha} = \mu \hat{h}_{\kappa}^{\alpha}$
 $(\operatorname{div} + i \kappa \cdot) \hat{b}_{\kappa}^{\alpha} = 0$
 $h^{\alpha}(x) = \frac{1}{(2\pi)^{3}} \int_{B_{\alpha}} d\kappa \ e^{i\kappa \cdot x} \hat{h}_{\kappa}^{\alpha}(x)$
To study the $\alpha = 0$ limit, one must
be able to compare the $\hat{h}_{\kappa}^{\alpha's}$ for
 $y = x/\alpha$
 $different \alpha's$. "Pull back" to common domain C,
by scaling, to let them all live on the same reference cell.

 $(\operatorname{rot} + i\alpha\kappa \times)h_{\kappa}^{\alpha} = \alpha j_{\kappa}^{\alpha} \implies i\kappa \times \langle h_{\kappa}^{\alpha} \rangle_{C} = \langle j_{\kappa}^{\alpha} \rangle_{C} \rightarrow \hat{j}(\kappa)$ $b_{\kappa}^{\alpha} = \mu h_{\kappa}^{\alpha}$ $\Rightarrow i\kappa \cdot \langle b_{\kappa}^{\alpha} \rangle_{C} = 0$ Limits H and B of $\langle h_{\kappa}^{\alpha} \rangle$ and $\langle h_{\kappa}^{\alpha} \rangle$ satisfy $i\kappa \times H = \hat{j}(\kappa)$ $B = \mu_{eff} H$ $i\kappa \cdot B = 0$ f_{K} $(\operatorname{div} + i\alpha\kappa \cdot)b_{\kappa}^{\alpha} = 0$ $\alpha \rightarrow 0$:

the same system as Fourier coeffts for {h, b} in the homogeneous case:

$$i\kappa \times \hat{h}(\kappa) = \hat{j}(\kappa)$$
$$\hat{b}(\kappa) = \mu_{eff} \hat{h}(\kappa)$$
$$i\kappa \cdot \hat{b}(\kappa) = 0$$
so $\{h^{\alpha}, b^{\alpha}\} \longrightarrow \{h, b\}$

rot
$$h = 0$$
 $\langle h \rangle = H$
 $b = \mu h$ $B = \mu_{eff} H$
 $div b = 0$ $\langle b \rangle = B$

b and h C-per.

So indeed,

The weak $\alpha = 0$ limit inherent in Bloch

provides the expected convergence result.

Practical benefit:

Different sub-problems (one for each κ) reduce to a single "cell problem", that yields effective μ.

 $\mu \neq \mu, \epsilon = \epsilon_0 - i\sigma/\omega$

 $-i\omega d + rot h = j$ $d = \varepsilon e, b = \mu h$

 $i\omega b$ +rot e = 0

 $\epsilon,\mu\,$ unchanged by translations $\,\tau\!\in\!T\,$

$$-i\omega \hat{d}_{\kappa} + (rot + i\kappa \times) \hat{h}_{\kappa} = \hat{j}_{\kappa}$$
$$\hat{d}_{\kappa} = \varepsilon \hat{e}_{\kappa}, \quad \hat{b}_{\kappa} = \mu \hat{h}_{\kappa}$$
$$i\omega \hat{b}_{\kappa} + (rot + i\kappa \times) \hat{e}_{\kappa} = 0$$

for each $\kappa \in B$

Scaling:
$$h_{\kappa}^{\alpha}(y) \stackrel{\text{def.}}{=} h_{\kappa}^{\alpha}(\alpha y)$$
, etc.

$$y = \frac{y}{C}$$

$$-i\omega\alpha d_{\kappa}^{\alpha} + (rot + i\alpha\kappa \times)h_{\kappa}^{\alpha} = \alpha j_{\kappa}^{\alpha}$$

$$d_{\kappa}^{\alpha} = \varepsilon e_{\kappa}^{\alpha}, \ b_{\kappa}^{\alpha} = \mu h_{\kappa}^{\alpha}$$

$$i\omega\alpha b_{\kappa}^{\alpha} + (rot + i\alpha\kappa \times)e_{\kappa}^{\alpha} = 0$$

$$(div + i\alpha\kappa \cdot)b_{\kappa}^{\alpha} = 0$$

 $(i\omega q + div j = 0 \text{ results in } i\omega\alpha q_{\kappa}^{\alpha} + div j_{\kappa}^{\alpha} = 0)$

 $-i\omega\alpha d + (rot + i\alpha\kappa \times)h_{\kappa}^{\alpha} = \alpha j_{\kappa}^{\alpha} \Rightarrow$ $-i\omega \langle d_{\kappa}^{\alpha} \rangle_{C} + i\kappa \times \langle h_{\kappa}^{\alpha} \rangle_{C} = \langle j_{\kappa}^{\alpha} \rangle_{C}$ $b_{\kappa}^{\alpha} = \mu h_{\kappa}^{\alpha}$ î(к) $(\operatorname{div} + i \alpha \kappa \cdot) b_{\kappa}^{\alpha} = 0 \implies i \kappa \cdot \langle b_{\kappa}^{\alpha} \rangle_{C} = 0$ $-i\omega D + i\kappa \times H = \hat{j}(\kappa)$ В $B = \mu_{eff}H$ $\alpha \rightarrow 0$: $i\omega B + i\kappa \times E = 0$ rot h = 0 $\langle h \rangle = H$ $D = \varepsilon_{eff} E$ $B = \mu_{eff}H$ $b = \mu h$ $-i\omega d(\kappa) + i\kappa \times h(\kappa) = \hat{j}(\kappa)$ div b = 0 $\langle b \rangle = B$ $d(\kappa) = \varepsilon_{eff} e(\kappa)$ $i\omega \hat{b}(\kappa) + i\kappa \times \hat{e}(\kappa) = 0$ b and h C-per. $b(\kappa) = \mu_{eff} h(\kappa)$ same for e and d

So, it seems,

the method does apply to full Maxwell, but with disappointing results:

Effective ϵ and μ are the static ones

(no chirality, no negative index).

The introduction of a second small parameter, "competing" with α , will save the day.

(very good conductor)

First small parameter: $\ell << \lambda$ Second small parameter: $\delta << \ell$

(to say nothing of "contrast", $\omega \varepsilon_0 / \sigma$, here taken = 0)

Model by "capacitive layer" on slit \sum and its translates

(perfect conductor)

Weak formulation in h:

$$\sum = \text{set-union of all slits} \qquad A = \text{"air" region}$$
(outside rings)
$$\int_{A} i\omega\mu \, h \cdot h' + \int_{A} \frac{1}{i\omega\epsilon} (\text{rot } h - j) \cdot \text{rot } h' + \dots$$

$$+ \int_{\Sigma} \frac{\delta}{i\omega\epsilon} (n \cdot \text{rot } h) (n \cdot \text{rot } h') = 0 \quad \forall h' \text{ ("test field")}$$

Weak formulation in h:

 $\sum = \text{set-union of all slits} \qquad A = \text{"air" region} (\text{outside rings})$ $\int_{A} i\omega\mu \, h \cdot h' + \int_{A} \frac{1}{i\omega\epsilon} (\text{rot } h - j) \cdot \text{rot } h' + \dots$ $+ \int_{\Sigma} \frac{\delta}{i\omega\epsilon} (n \cdot \text{rot } h) (n \cdot \text{rot } h') = 0 \quad \forall h' (\text{"test field"})$

Embedding:

$$\begin{split} \int_{A_{\alpha}} & i\omega\mu \ h^{\alpha} \cdot h' + \int_{A_{\alpha}} \frac{1}{i\omega\epsilon} (\operatorname{rot} h^{\alpha} - j) \cdot \operatorname{rot} h' + \dots \\ & + \int_{\sum_{\alpha}} \frac{\alpha^{3}\delta}{i\omega\epsilon} (n \cdot \operatorname{rot} h^{\alpha}) (n \cdot \operatorname{rot} h') = 0 \quad \forall h' \end{split}$$

Scaling:

(Now A and S refer to the reference cell, h^{α} is the κ -Bloch component, C-periodic)

$$\alpha^{3} \int_{A} i\omega\mu h^{\alpha} \cdot h'$$

$$+ \alpha \int_{A} \frac{1}{i\omega\varepsilon} (\operatorname{rot} + i\alpha\kappa \times) h^{\alpha} - \alpha j) \cdot (\operatorname{rot} - i\alpha\kappa \times) h'$$

$$+ \alpha^{3} \int_{\Sigma} \frac{\delta}{i\omega\varepsilon} (n \cdot (\operatorname{rot} + i\alpha\kappa \times) h) (n \cdot (\operatorname{rot} - i\alpha\kappa \times) h')$$

$$= 0 \quad \forall h'$$

just right to preserve resonance

Will get complex part if finiteness of σ is accounted for

Thanks