Alain Bossavit

Laboratoíre de Génie 壬lectrique de Paris (CN®RS)
bossavit@lgep.supelec.fr
Proving fomogenization correct

Statics, easy. Full Maxwell, tricky.

Homogenization

What it is,

what kind of justification it requires

$\mu>\mu_{0}$

$\overrightarrow{\text { M.m.f. }} \mathfrak{H}$

Desired relation: $\mathcal{B}=\mathcal{L} \mathcal{H}$
Cheaper this way
From homogenized law, $B=\mu_{\text {eff }} \mathrm{H}$

FEM on "cell-problem": Auxiliary M.S. problem on C with periodic
Expensive
From local law, $b=\mu \mathrm{h}$ boundary conditions

The cell problem

actual field $=$ large-scale average + "C-periodic" correction
h H

$$
\begin{gathered}
\varphi(\mathrm{A})=\varphi\left(\mathrm{A}^{\prime}\right) \\
(\text { "C-periodic") }
\end{gathered}
$$

$$
\int \mu|H+\nabla \varphi|^{2}
$$

$$
=\mu_{\mathrm{eff}} \mathrm{H} \cdot \mathrm{H}
$$

A better, symmetric, formulation
$\operatorname{rot} \mathrm{h}=0$
$\mathrm{b}=\mu \mathrm{h}$
$\operatorname{div} \mathrm{b}=0$

Both b and h C-periodic
$\langle\mathrm{h}\rangle=\mathrm{H}$

$$
\langle\mathrm{b}\rangle=\mathrm{B}
$$

Find linear relation
$B=\mu_{\text {eff }} H$
that allows
non-trivial solution
to exist
As a rule, $\mu_{\text {eff }}$ is a matrix (3×3)

Some theoretical

 justification is needed, some convergence result,
like

"when $\alpha \rightarrow 0$, exact solution

$$
\mathrm{h}_{\alpha}=\mathrm{H}+\operatorname{grad} \varphi_{\alpha}
$$

weakly converges to solution h of homogenized problem"
(the one in which $\mu_{\text {eff }}$ replaces μ_{α}), where "weakly" means that

$$
\alpha \ell^{\leftarrow} \quad \alpha=\frac{\text { virtual cell-size }}{\text { actual cell-size }}
$$

So, embed actual problem ("problem P") in family of virtual problems (" P_{α} ", with P one of them, for instance P_{1}), and prove solution u_{α} weakly convergent to solution u_{0} of some problem P_{0}, simpler than P_{1}.* Then solve P_{0}.

Local corrections may be needed:

* Homogenization thus belongs to the larger family of perturbative techniques

α often called "small parameter"

Essential: α dimensionless quantity
Non-essential: $\alpha=1$ for actual problem.
Depends on reference value used: here, size of actual cell, but could be any problem-specific length, such as wavelength λ, or size L of the macroscopic device.

Since $\left\langle u_{\alpha}\right\rangle \sim\left\langle u_{0}\right\rangle+\left.\alpha \partial_{\alpha}\left\langle u_{\alpha}\right\rangle\right|_{\alpha=0}$, what need be small is $\left.\alpha \frac{\partial_{\alpha}\left\langle u_{o}\right\rangle}{\left\langle u_{0}\right\rangle}\right|_{\alpha=0}$, easy to estimate.

Most often (but not always!), can indeed be proven small (i.e., $\ll 1$) when ℓ / λ or $\ell / L \ll 1$, the usual requisites.
$\mathrm{w}^{2^{\wedge}} \quad$ Floquet-Bloch decomposition:

$$
\mathrm{v}_{\mathrm{i}} \cdot \mathrm{w}^{\mathrm{j}}=2 \pi \delta_{\mathrm{i}}^{\mathrm{j}}
$$

$$
\operatorname{vol}(\mathrm{B}) \operatorname{vol}(\mathrm{C})=(2 \pi)^{3}
$$

, $\mathrm{w}^{1} \quad{ }^{1}$ translation vectors $\tau=\sum_{i=1}^{\mathrm{i}=3} \mathrm{Z}^{\mathrm{i}} \mathrm{v}_{\mathrm{i}}$, integer Z_{i}

$$
\hat{\varphi}_{\kappa}(\mathrm{x})=\operatorname{vol}(\mathrm{C}) \sum_{\tau} \mathrm{e}^{-\mathrm{i} \kappa \cdot(\tau+\mathrm{x})} \varphi(\mathrm{x}+\tau)
$$

Notice: "Bloch components" $\widehat{\varphi}_{\kappa}$ are C-periodic

$$
\varphi(\mathrm{x})=\frac{1}{(2 \pi)^{3}} \int_{\mathrm{B}} \mathrm{~d} \kappa \mathrm{e}^{\mathrm{iK} \cdot \mathrm{x}} \hat{\varphi}_{\mathrm{K}}(\mathrm{x})
$$

$\kappa \in \mathrm{B}$ (akin to "Brillouin zone")
$\exp (\mathrm{i} \kappa \cdot \tau)=\exp \left(\mathrm{i}\left(\kappa+\sum_{\mathrm{j}} \zeta_{\mathrm{j}} \mathrm{w}^{\mathrm{j}}\right) \cdot \tau\right) \quad$ for integer ζ_{j}, B a 3-torus.

Bloch and Fourier

$$
\begin{array}{|l|l}
\hat{\varphi}(\kappa)=\int \mathrm{d} \tau \mathrm{e}^{-\mathrm{i} \kappa \cdot \tau} \varphi(\tau) & \hat{\varphi}_{K}(\mathrm{x})=\operatorname{vol}(\mathrm{C}) \sum_{\mathrm{t}} \mathrm{e}^{-\mathrm{ik} \cdot(\tau+\mathrm{x})} \varphi(\mathrm{x}+\tau) \\
\varphi(\mathrm{x})=(2 \pi)^{-3} \int \mathrm{~d} \kappa \mathrm{e}^{\mathrm{i} \kappa \cdot \mathrm{x}} \hat{\varphi}(\kappa) & \varphi(\mathrm{x})=\frac{1}{(2 \pi)^{3}} \int_{\mathrm{B}} \mathrm{~d} \kappa \mathrm{e}^{\mathrm{i} \kappa \cdot \mathrm{x}} \hat{\varphi}_{\kappa}(\mathrm{x})
\end{array}
$$

Fourier Bloch

Intuitively clear, but not so obvious to formalize, connections between them

Bloch and Fourier

$\mathrm{C}_{\alpha}=\alpha \mathrm{C} \quad$ (homothety)
T : • translation vectors
T_{α} : • translation vectors

$$
\hat{\varphi}_{\kappa}^{\alpha}(\mathrm{x})=\operatorname{vol}\left(\mathrm{C}_{\alpha}\right) \sum_{\tau \in \mathrm{T}_{\alpha}} \mathrm{e}^{-\mathrm{i} \kappa \cdot(\mathrm{x}+\tau)} \varphi(\mathrm{x}+\tau) \underset{(\text { for regular } \varphi)}{\rightarrow} \underbrace{\int \mathrm{dy}(\kappa)} \mathrm{e}^{-\mathrm{ik} \cdot \mathrm{y}} \varphi(\mathrm{y})
$$

So the average $\left\langle\hat{\varphi}_{\kappa_{k}}^{\alpha}\right\rangle_{\alpha}{ }^{\text {on }}$ over C_{α} tends to $\hat{\varphi}(\kappa)$ when $\alpha \rightarrow 0$
There is a kind of reciprocal property:

- Bounded family φ^{α} of functions $\mathbb{L}^{2}\left(R^{n}\right)$
- Bloch representation $\left\{\hat{\varphi}_{\kappa}^{\alpha}, \kappa \in B_{\alpha}\right\}$ of each φ^{α}
- Function φ in $\mathbb{L}^{2}\left(\mathrm{R}^{\mathrm{n}}\right)$, its Fourier transform $\hat{\varphi}$

Theorem:

If $\lim _{\alpha \rightarrow 0}\left\langle\left\langle\hat{\varphi}_{\kappa}^{\alpha}(\mathrm{x})\right\rangle_{\mathrm{C}_{\alpha}}=\hat{\varphi}(\kappa)\right.$ for all κ
Then

$$
\varphi^{\alpha} \rightharpoonup \varphi
$$

when $\alpha \rightarrow 0$
(weak convergence, i.e.,

$$
\left.\int \mathrm{dx} \varphi^{\alpha}(\mathrm{x}) \mathrm{u}(\mathrm{x}) \xrightarrow{\alpha \rightarrow 0} \int \mathrm{dx} \varphi(\mathrm{x}) \mathrm{u}(\mathrm{x}) \forall \mathrm{u}\right)
$$

Lattice T of translations τ
leaving μ unchanged
$\mu>\mu_{0}$
Bloch decomposition:

$$
h(x)=\frac{1}{(2 \pi)^{3}} \int_{\mathrm{B}} \mathrm{~d} \kappa \mathrm{e}^{\mathrm{i} \kappa \cdot \mathrm{x}} \widehat{h}_{\mathrm{h}}(\mathrm{x}), \text { etc. }
$$

$$
\begin{aligned}
& \operatorname{rot} \mathrm{h}=\mathrm{j} \\
& \mathrm{~b}=\mu \mathrm{h} \\
& \operatorname{div} \mathrm{~b}=0
\end{aligned}
$$

$$
(\operatorname{rot}+i \kappa \times) \hat{\mathrm{h}}_{\kappa}=\hat{\mathrm{j}}_{\kappa}
$$

$$
\Longrightarrow \text { for each } \kappa,
$$

$$
\hat{\mathrm{b}}_{\mathrm{K}}=\mu \hat{\mathrm{h}}_{\mathrm{K}}
$$

$$
(\operatorname{div}+i \kappa \cdot) \widehat{b}_{\kappa}=0
$$

Embed problem in family, indexed on α, with cell C_{α}

$$
\begin{aligned}
\hat{\mathrm{h}}_{\kappa}^{\alpha}(\mathrm{x})= & \operatorname{vol}\left(\mathrm{C}_{\alpha}\right) \sum_{\tau \in \mathrm{T}_{\alpha}} \mathrm{e}^{-\mathrm{i} \kappa(\mathrm{x}+\tau)} \mathrm{h}^{\alpha}(\mathrm{x}+\tau), \text { etc. } \\
& (\operatorname{rot}+\mathrm{i} \kappa \times) \hat{\mathrm{h}}_{\kappa}^{\alpha}=\hat{\mathrm{j}}_{\kappa}
\end{aligned}
$$

$$
\hat{\mathrm{b}}_{\kappa}^{\alpha}=\mu \hat{\mathrm{h}}_{\kappa}^{\alpha}
$$

All functions

$$
(\operatorname{div}+i \kappa \cdot) \hat{b}_{\kappa}^{\alpha}=0
$$

C_{α}-periodic.

$$
h^{\alpha}(x)=\frac{1}{(2 \pi)^{3}} \int_{B_{\alpha}} d \kappa e^{i \kappa \cdot x} \hat{h}_{\kappa}^{\alpha}(x)
$$

To study the $\alpha=0$ limit, one must be able to compare the $\widehat{\mathrm{h}}_{\mathrm{k}}^{\alpha_{1}}$ s for
 different α 's. "Pull back" to common domain C, by scaling, to let them all live on the same reference cell.

Scaling: "Pull back" Bloch components $\widehat{\mathrm{h}}_{\mathrm{K}}$, etc., to C, call the pullbacks h_{κ}, b_{κ}, etc.

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{K}}^{\alpha}(\mathrm{y}) \stackrel{\text { def. }}{=} \hat{\mathrm{h}}_{\mathrm{K}}^{\alpha}(\alpha \mathrm{y}) \\
& \widehat{\mathrm{h}}_{\mathrm{K}}^{\alpha}(\mathrm{x})=\mathrm{h}_{\mathrm{K}}^{\alpha}(\mathrm{x} / \alpha)
\end{aligned}
$$

Observe that
$\operatorname{rot} \hat{\mathrm{h}}_{\mathrm{K}}^{\alpha}(\mathrm{x})=\frac{1}{\alpha} \operatorname{rot} \mathrm{~h}_{\mathrm{K}}^{\alpha}(\mathrm{y})$

(chain-rule, or Stokes thm.) Same with div

Note that $\left\langle\widehat{\mathrm{h}_{\mathrm{k}}^{0}}\right\rangle_{C_{\alpha}}=\left\langle\mathrm{h}_{\mathrm{k}}^{\alpha}\right\rangle_{\mathrm{C}}$

$(\operatorname{rot}+\mathrm{i} \alpha \kappa \times) \mathrm{h}_{\mathrm{K}}^{\alpha}=\alpha \mathrm{j}_{\mathrm{K}}^{\alpha}$ $b_{\kappa}^{\alpha}=\mu h_{\kappa}^{\alpha}$
$(\operatorname{div}+\mathrm{i} \alpha \kappa \cdot) \mathrm{b}_{\mathrm{K}}^{\alpha}=0$
New cell-problems, now all set on C
$(\operatorname{rot}+\mathrm{i} \alpha \kappa \times) \mathrm{h}_{\kappa}^{\alpha}=\alpha \mathrm{j}_{\kappa}^{\alpha} \Rightarrow \mathrm{i} \kappa \times\left\langle\mathrm{h}_{\kappa}^{\alpha}\right\rangle_{\mathrm{C}}=\left\langle\mathrm{j}_{\kappa}^{\alpha}\right\rangle_{\mathrm{C}} \rightarrow \hat{\mathrm{j}}(\kappa)$ $b_{\kappa}^{\alpha}=\mu h_{\kappa}^{\alpha}$
$(\operatorname{div}+\operatorname{i\alpha \kappa } \cdot) \mathrm{b}_{\mathrm{K}}^{\alpha}=0 \quad \Rightarrow \quad \mathrm{i} \kappa \cdot\left\langle\mathrm{b}_{\mathrm{K}}^{\alpha}\right\rangle_{\mathrm{C}}=0$

$$
\alpha \rightarrow 0: \quad \downarrow
$$

$$
\left\langle\mathrm{h}_{\mathrm{\kappa}}^{\alpha}\right\rangle \text { and }\left\langle\mathrm{h}_{\mathrm{\kappa}}^{\alpha}\right\rangle \text { satisfy }\left\{\begin{array}{l}
\mathrm{B}=\mu_{\mathrm{eff}} \mathrm{H} \\
\text { iК } \cdot \mathrm{B}=0
\end{array}\right.
$$

the same system as Fourier coeffts for $\{\mathrm{h}, \mathrm{b}\}$ in the homogeneous case:

$$
\begin{array}{ll}
& \mathrm{i} \kappa \times \hat{\mathrm{h}}(\kappa)=\hat{j}(\kappa) \\
& \hat{\mathrm{b}}(\kappa)=\mu_{\mathrm{eff}} \hat{\mathrm{~h}}(\kappa) \\
& \mathrm{i} \kappa \cdot \hat{\mathrm{~b}}(\kappa)=0 \\
\text { so }\left\{\mathrm{h}^{\alpha}, \mathrm{b}^{\alpha}\right\} \longrightarrow\{\mathrm{h}, \mathrm{~b}\}
\end{array}
$$

So indeed,

The weak $\alpha=0$ limit inherent in Bloch
provides the expected convergence result.
Practical benefit:
Different sub-problems (one for each к) reduce to a single "cell problem", that yields effective μ.

Now, AC source

$$
\begin{aligned}
& -i \omega d+\operatorname{rot} h=j \\
& d=\varepsilon \mathrm{e}, \mathrm{~b}=\mu \mathrm{h} \\
& i \omega \mathrm{~b}+\operatorname{rot} \mathrm{e}=0
\end{aligned}
$$

$$
\mu \neq \mu, \varepsilon=\varepsilon_{0}-\mathrm{i} \sigma / \omega
$$

ε, μ unchanged by translations $\tau \in T$

$$
\begin{gathered}
-i \omega \hat{\mathrm{~d}}_{\kappa}+(\operatorname{rot}+\mathrm{i} \kappa x) \hat{\mathrm{h}}_{\kappa}=\hat{\mathrm{j}}_{\kappa} \\
\hat{\mathrm{d}}_{\kappa}=\varepsilon \hat{\mathrm{e}}_{\kappa}, \hat{\mathrm{b}}_{\kappa}=\mu \hat{\mathrm{h}}_{\kappa} \\
i \omega \hat{\mathrm{~b}}_{\kappa}+(\operatorname{rot}+\mathrm{i} \kappa \times) \hat{\mathrm{e}}_{\kappa}=0 \\
\text { for each } \kappa \in \mathrm{B}
\end{gathered}
$$

Scaling: $h_{\kappa}^{\alpha}(y) \stackrel{\text { def }}{=} \widehat{h}_{\kappa}^{\alpha}(\alpha y)$, etc.

$-i \omega \alpha \mathrm{~d}_{\kappa}^{\alpha}+(\operatorname{rot}+\mathrm{i} \alpha \kappa \times) \mathrm{h}_{\kappa}^{\alpha}=\alpha \mathrm{j}_{\kappa}^{\alpha} \quad(\operatorname{div}+\mathrm{i} \alpha \kappa \cdot) \mathrm{d}_{\kappa}^{\alpha}=\alpha \mathrm{q}_{\kappa}^{\alpha}$

$$
\mathrm{d}_{\kappa}^{\alpha}=\varepsilon \mathrm{e}_{\kappa}^{\alpha}, \mathrm{b}_{\kappa}^{\alpha}=\mu \mathrm{h}_{\kappa}^{\alpha}
$$

$i \omega \alpha b_{\kappa}^{\alpha}+(\operatorname{rot}+\mathrm{i} \alpha \kappa x) \mathrm{e}_{\kappa}^{\alpha}=0$
$(\operatorname{div}+\mathrm{i} \alpha \kappa \cdot) \mathrm{b}_{\mathrm{K}}^{\alpha}=0$
$\left(i \omega q+\operatorname{div} j=0 \quad\right.$ results in $\left.\quad i \omega \alpha q_{\mathrm{K}}^{\alpha}+\operatorname{div} \mathrm{j}_{\mathrm{K}}^{\alpha}=0\right)$
$-i \omega \alpha d+(\operatorname{rot}+i \alpha \kappa x) h_{\kappa}^{\alpha}=\alpha j_{\kappa}^{\alpha} \Rightarrow$

$$
b_{\kappa}^{\alpha}=\mu h_{\kappa}^{\alpha}
$$

$$
{ }_{-}-\mathrm{i} \omega\left\langle\mathrm{~d}_{\mathrm{N}}^{\alpha}\right\rangle_{\mathrm{C}}+\mathrm{i} \times \times\left\langle\mathrm{h}_{\mathrm{K}}^{\alpha}\right\rangle_{\mathrm{C}}=\left\langle\mathrm{j}_{\mathrm{K}}^{\alpha}\right\rangle_{\mathrm{C}}
$$

D
H

$(\operatorname{div}+\mathrm{i} \alpha \kappa \cdot) \mathrm{b}_{\mathrm{K}}^{\alpha}=0 \Rightarrow \mathrm{i} \kappa \cdot\left\langle\mathrm{b}_{\mathrm{K}}^{\alpha}\right\rangle_{\mathrm{C}}=0$ j(к)

$$
\text { B } \quad-\mathrm{i} \omega \mathrm{D}+\mathrm{i} \kappa \times \mathrm{H}=\hat{\mathrm{j}}(\kappa)
$$

$$
\alpha \rightarrow 0:
$$

$$
\mathrm{B}=\mu_{\mathrm{eff}} \mathrm{H}
$$

$$
i \omega B+i \kappa \times E=0
$$

$$
\begin{array}{cl}
\text { rot } h=0 & \langle h\rangle=H \\
b=\mu \mathrm{h} & \mathrm{~B}=\mu_{\mathrm{eff}} \mathrm{H}
\end{array}
$$

$\operatorname{div} \mathrm{b}=0 \quad\langle\mathrm{~b}\rangle=\mathrm{B}$ b and h C-per. same for e and d
$D=\varepsilon_{\text {eff }} E$

$$
-\mathrm{i} \omega \hat{\mathrm{~d}}(\kappa)+\mathrm{i} \kappa \times \hat{\mathrm{h}}(\kappa)=\widehat{\mathrm{j}}(\kappa)
$$

$$
\widehat{d}(\kappa)=\varepsilon_{\text {eff }} \widehat{e}(\kappa)
$$

$i \omega \hat{b}(\kappa)+i \kappa \times \widehat{e}(\kappa)=0$
$\widehat{b}(\kappa)=\mu_{\mathrm{eff}} \widehat{\mathrm{h}}(\kappa)$

So, it seems,

the method does apply to full Maxwell, but with disappointing results:

Effective ε and μ are the static ones
(no chirality, no negative index).
The introduction
of a second small parameter, "competing" with α, will save the day.

(very good conductor)

First small parameter: $\quad \ell \ll \lambda$ Second small parameter: $\delta \ll \ell$

Model by "capacitive layer" on slit \sum and its translates
(to say nothing of
"contrast", $\omega \varepsilon_{0} / \sigma$, here taken $=0$)
(perfect conductor)

Weak formulation in h :

$\sum=$ set-union of all slits

$$
\mathrm{A}=\text { "air" region } \quad \text { (outside rings) }
$$

$$
\begin{aligned}
& \int_{\mathrm{A}} \mathrm{i} \omega \mu \mathrm{~h} \cdot \mathrm{~h}^{\prime}+\int_{\mathrm{A}} \frac{1}{\mathrm{i} \omega \varepsilon}(\operatorname{roth}-\mathrm{j}) \cdot \operatorname{rot} \mathrm{h}^{\prime}+\ldots \\
& \quad+\int_{\Sigma} \frac{\delta}{\mathrm{i} \omega \varepsilon}(\mathrm{n} \cdot \operatorname{roth})\left(\mathrm{n} \cdot \operatorname{rot} \mathrm{~h}^{\prime}\right)=0 \quad \forall \mathrm{~h}^{\prime}(\text { "test field" })
\end{aligned}
$$

Weak formulation in h :

$\sum=$ set-union of all slits

$$
\mathrm{A}=\text { "air" region } \quad \text { (outside rings) }
$$

$$
\begin{aligned}
& \int_{\mathrm{A}} \mathrm{i} \omega \mu \mathrm{~h} \cdot \mathrm{~h}^{\prime}+\int_{\mathrm{A}} \frac{1}{\mathrm{i} \omega \varepsilon}(\operatorname{roth}-\mathrm{j}) \cdot \operatorname{rot} \mathrm{h}^{\prime}+\ldots \\
& \quad+\int_{\Sigma} \frac{\delta}{\mathrm{i} \omega \varepsilon}(\mathrm{n} \cdot \operatorname{roth})\left(\mathrm{n} \cdot \operatorname{rot} \mathrm{~h}^{\prime}\right)=0 \quad \forall \mathrm{~h}^{\prime}(\text { "test field" })
\end{aligned}
$$

Embedding:

$$
\begin{aligned}
\int_{\mathrm{A}_{\alpha}} i \omega \mu \mathrm{~h}^{\alpha} \cdot \mathrm{h}^{\prime} & +\int_{\mathrm{A}_{\alpha}} \frac{1}{i \omega \varepsilon}\left(\operatorname{rot} \mathrm{~h}^{\alpha}-\mathrm{j}\right) \cdot \operatorname{rot} \mathrm{h}^{\prime}+\ldots \\
& +\int_{\Sigma_{\alpha}} \frac{\alpha^{3} \delta}{\mathrm{i} \omega \varepsilon}\left(\mathrm{n} \cdot \operatorname{rot} \mathrm{~h}^{\alpha}\right)\left(\mathrm{n} \cdot \operatorname{rot} \mathrm{~h}^{\prime}\right)=0 \quad \forall \mathrm{~h}^{\prime}
\end{aligned}
$$

Scaling:

(Now A and S refer to the reference cell, h^{α} is the κ-Bloch component, C-periodic)
$\alpha^{3} \int_{A} i \omega \mu h^{\alpha} \cdot h^{\prime}$
$\left.+\alpha \int_{\mathrm{A}} \frac{1}{i \omega \varepsilon}(\operatorname{rot}+i \alpha \kappa x) h^{\alpha}-\alpha j\right) \cdot(\operatorname{rot}-i \alpha \kappa x) h^{\prime}$
$+\alpha^{3} \int_{\Sigma} \frac{\delta}{i \omega \varepsilon}(\mathrm{n} \cdot(\operatorname{rot}+\mathrm{i} \alpha \kappa x) \mathrm{h})\left(\mathrm{n} \cdot(\operatorname{rot}-\mathrm{i} \alpha \kappa \times) \mathrm{h}^{\prime}\right)$

$$
=0 \quad \forall h^{\prime}
$$

just right to preserve resonance

The $\alpha=0$ limit: An exotic cell problem

 Find $\varphi \in \Phi^{\mathrm{H}}$ such that, $\forall \varphi^{\prime} \in \Phi^{0}$, where $\mathrm{C}=\int_{\Sigma} \frac{\varepsilon}{\delta}$$$
\int_{\mathrm{A}} \mathrm{i} \omega \mu \nabla \varphi \cdot \nabla \varphi^{\prime}+\frac{1}{\mathrm{i} \omega \mathrm{C}}[\varphi]\left[\varphi^{\prime}\right]=0
$$

(capa of slit)
and $\Phi=\left\{\varphi: \varphi(\mathrm{x}+\mathrm{t})-\varphi(\mathrm{x})=\mathrm{H} \cdot \tau\right.$ for $\left.\tau=\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$
with "jump" $[\varphi]$ across "cutting surface" S

Then, $\mu_{\text {eff }} \mathrm{H} \cdot \mathrm{H}=$

$$
\int_{\mathrm{A}} \mu|\nabla \varphi|^{2}-\frac{1}{\omega^{2} \mathrm{C}}[\varphi]^{2}
$$

Will get complex part if finiteness of σ is accounted for

Thanks

