Measurement techniques for electromagnetic properties of nanostructured materials, available equipment, and service provision in Europe (ECONAM FP7 project)

Lecturer: Constantin R. Simovski Coauthor: Vladimir V. Podlozny

Dec. 9 2009

Problem formulation

- Measurements for describing electromagnetic properties = electromagnetic characterization of the sample
- Characteristic parameters=adequate condensed description of the sample
- What is directly measured:
- Radio: pulses E(t), H(t), harmonic |E(ω)|, phase(E),|H|, phase(H),
- Optics: |E| (detectors), |E(ω)| (spectrometers, ellipsometers)
- All other parameters strictly speaking retrieved!
- phase(E) interferometers (retrieval within the tool)
- Other parameters: calculations, software

Spectrometers and interferometers

Michelson interferometer

Surface passive structures $d < \lambda$ Art and Nanosensing.

[2]

E=Esubstrate

No EM material characterization needs Molecular characterization!

0 nm

"Corral" of Fe atoms/Cu

Si (Resist)

Grid (inset) C60 /Si, NanoWires C60 /Si Defect line C60 /Si

Surface-bonded molecules – molecular sensing

Bulk non-plasmonic nanocomposites. Transparent

[3]

Diffraction gratings (d> λ), mesoscopic layers (d< λ)

Plasmonic mesoscopic layers. Examples

Resonant nanoclusters / Si substrate

Porous plasmonic layer

[9]

50 nm 200 nm

U-shaped SRR layer

[8]

Au - Ag nanocavities /Si substrate

Plasmonic chiral film (out of scope)

[11]

[10]

Page 7 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Scattering (non-transparent) media including plasmonic ones

(b) Cu@Ag

200 nm

(d) Ag

200 nm

[14]

Bulk plasmonic arrays, $d < \lambda$ 1)g~d Dipole materials. 2 g<<d Photonic crystals

Nanostructured photonic crystals ($d \sim > \lambda$)

Helsinki University of Technology - TKK Department of Radio Science and Engin

TKK

Ultrathin island films

films. In the present work, ultrathin, island-type gold films were prepared by evaporation of $1.0-15.0~\rm{nm}$ (nominal thickness) gold at a rate of $0.005-0.012~\rm{nm}~\rm{s}^{-1}$ onto glass substrates

Vertically aligned nanorods(nanotubes)

Other vertically aligned nanorods (InP, TiO2 etc)

[24]

Plasmonic (gold) nanorods

Carbon NT

Modest slow-wave factor

Uniaxial dielectric

(no spatial dispersion)

[22]

Huge slow-wave factor (>100)

Wire medium

(a kind of photonic crystal)

Bulk magnetic nanostructures. Examples

Optical Range: Sufficient transparence (similar to crystalline hexaferrite) 50nm 1. FM multilayer/polymer [26] 500 nm 2. *NiZn* particles and other **Optics (1-3):** [25] ferrite colloids Hdc $\neq 0$: $\mathcal{E} \neq \mathcal{E}_2$ $\varepsilon = \begin{pmatrix} \varepsilon_1 & +ig_z & 0\\ -ig_z & \varepsilon_1 & 0\\ 0 & 0 & \varepsilon_2 \end{pmatrix}$ 3. Nanostructured ferrites (Co island films, Bi-doped garnets) Radio (2+3): 1. Hold $\neq 0$: $\mu \neq 1$ $\overline{\mu} = \mu_0 \begin{pmatrix} \mu & 0 & -j\kappa \\ 0 & \mu_y & 0 \\ j\kappa & 0 & \mu \end{pmatrix}$ 4. Nanomagnets Hdc=0 Radio: μ ≠1. Optics: E=Eh 2. Hdc≠0: **Spin** waves

Classification of nanostructured materials (NSM) by their linear EM properties. Text

- Bulk passive structures (N>4-5 Unit Cells)
- Optically dense bulk structures d<<λ
- Non-resonant materials:
- Non-EM applications, EM applications,
- Thick films, optically large samples, Thin films and island films,
- Radiofreq. Mag. Med. and Nanomagnets, Magneto-Optical Media
- Plasmonic and polaritonic MTM:
- Dipole arrays, Multipole arrays, Resonant Photonic Crystals, Resonant scattering media
- Optically sparse bulk structures d~>λ
- Nanostructured Photonic Crystals, Scattering media (resonant and non-resonant)
- Surface passive structures (N<4-5 Unit Cells)
- d<< λ Dense gratings d~> λ Diffraction gratings,
- Non-resonant, Resonant
- Planar MTM, Vertically Aligned Nanorods
- Active nanostructures (of quantum dots and wires, dye-doped nanoporous and liquid crystals matrices, etc). Out of scope

Classification of NSM by their linear EM properties. Chart

Page 15 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Explanation of the chart

Page 16 | Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Bulk layers and bars characterization. Nicholson-Ross-Weir (NRW) technique

Bulk samples characterization. Other radio techniques

2. Cylindrical cavity method (specimen-rod)

3. Rectangular cavity method (specimen- bar) (many people in 1950s)

Bulk samples radio characterization. Unusual resonator techniques

Specimen - Layer in a split-disk (quasi-TE011) resonator

Specimen - Whisp. Gal. resonator

[37-40]

Characterization of bulk media using wedges

Deviation angle shows the Energetic Velocity VE. Low loss: VE=Vg

Only detectors need to detect the Negative Refraction.

 ϵ and μ can be extracted from ${\bf R}$ and ${\bf T}$

[41]

Helsinki University of Technology - TKK Department of Radio Science and Engineering

Magnetic NSM: characterization in the radio range

Characterizations *in situ*, e.g. coplanar and microstrip isolators

[42-46]

Page 21 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Magnetic samples: experimental characterization in the visible

- 1. Magnetic Kerr constant (E2-E1) [47]
- Faraday-Verde constant g_z [48]
- 2. Brillouin microwave characteristics: spin waves frequencies [47]

Non-magnetic films experimental characterization

- b) Unknown thickness h (especially island films):
- 1. Schopper method (1952) the same as NRW where h and ϵ to be found (µ=1)
- 2. Malé method (1950) low-loss films: ε and h can be found from |R| and |T|
- 3. Modern ellipsometry [51-56, 40]

Modern film ellipsometry

Most advanced: Variable-Angle-Spectrometric Ellipsometry (VASE) [40]

Known h –complex \mathcal{E}_t , \mathcal{E}_n for uniaxial films

Transmission ellipsometry [51, 52].

Generalized ellipsometry (fully anisotropic specimen, unknown h) - both schemes [54-56]

Page 24 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Photonic crystals experimental characterization

Usually - validation of simulations!

- 1. Band-gaps detection [57].
- 2. For low-loss structures: phase(T) dispersion along ΓX [58]

Page 25 | Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Scattering sample's experimental characterization: absorption and extinction coefficients

Experimental characterization of mesoscopic layers

Experimental characterization of diffraction gratings

- Normal incidence λ>d, oblique incidence λ>2d:
- IR or |T| (λ). Plasmonic gratings: absorption coefficient (at Wood anomalies)
- Normal incidence λ<d, Oblique incidence λ<2d:
- Angular dispersion $D(\lambda, m)$, where m=±1.. ±[d/ λ] grating spectral orders.
- 3. Free intervals of dispersion $\Delta\lambda(m)$. 4. Normalized intensity distribution $I_{max}(\lambda,m)$.

[60]

What should you take into consideration

What kind of equipment?

- Radio range: network analyser
- <u>Optics</u>: Spectrometers: |**R**,**T**| (ω)
- Ellipsometers: polarisation ellipse (VASE also |R, T| (ω))
- Interferometers: phase(R,T)
- Optical radiation sources: laser, emitter + tunable filter,
- Special microscopes (SEM, TEM, AFM, aSNOM etc) : internal geometry
- Other: chemical analysis tools (elemental characterization)

EM charact. parameters are *derivative parameters*

- A list of the equipment (with some technical data) and a list of these facilities hosting institutions can be found at
- Disclaimer: The information has been collected taking into account the expertise of the facilities owners in EM characterization and their interest.

What kind of expertise is available?

Table 1. Samples (classes and measurement techniques)

Materials Types	Slabs	Wedges	Bulk samples or bars	Substrate	Layer(s) on a substrate	Sub-wave length samples	Other?
Isotropic materials							
Photonic crystals							
Quasicrystals							
Mesoscopic samples							
Bianisotropic							
Anisotropic inversion symmetrical							
Active materials							
Controllable materials							
Diffraction gratings							
Scattering media							
Other?							

This interactive table with filled cells is available at

http://econam.metamorphose-vi.org/facilities/by-materials-and-samples-types

Claimed expertise

See on these laboratories at <u>http://econam.metamorphose-vi.org/</u>facilities/by-laboratories

Materials types	Slabs	Complex shape object	Bulk samples or bars	Substrate	Layer(s) on substrate	Sub-wave length samples	Thin films
lsotropic materials	LPC AMOLF USPI JENA INT ORC	AMOLF USPI INT ORC	LPC USPI INT ORC	LPC RWTH USPI INT ORC	KIT AMOLF RWTH USPI INT JENA ORC	AMOLF NBTG RWTH USPI INT ORC	LPC AMOLF RWTH USPI INT ORC
Photonic crystals	LPC AMOLF USPI JENA INT ORC	AMOLF USPI INT ORC	LPC USPI INT ORC	LPC RWTH USPI INT ORC	KIT AMOLF RWTH USPI JENA INT ORC	AMOLF NBTG RWTH USPI INT ORC	LPC AMOLF RWTH INT ORC
Quasicrystals	RWTH USPI JENA INT ORC	USPI INT ORC	USPI INT ORC	RWTH INT ORC	KIT RWTH USPI INT ORC JENA	NBTG USPI RWTH INT ORC	RWTH INT ORC
Mesoscopic samples	USPI JENA INT ORC	USPI INT ORC	USPI INT ORC	INT ORC	USPI JENA INT ORC	USPI INT ORC	INT ORC

Bianisotropic	USPI JENA INT ORC	USPI INT ORC	USPI INT ORC	INT ORC	USPI JENA INT ORC	AMOLF NBTG USPI INT ORC	AMOLF INT ORC
Anisotropic inversion symmetrical	AMOLF JENA INT ORC	INT ORC	INT ORC	INT ORC	AMOLF JENA INT ORC	AMOLF NBTG INT ORC	AMOLF INT ORC
Active materials	INT ORC	INT ORC	INT ORC	INT ORC	INT ORC	TUI NBTG INT ORC	INT ORC
Controllable materials	INT ORC	RWTH INT ORC	INT ORC	INT ORC	KIT RWTH USPI ORC INT	NBTG INT ORC	RWTH INT ORC
Diffraction	USPI	INT	USPI	INT	INT	INT	INT
gratings	ORC	ORC	ORC	ORC	ORC	ORC	ORC
Scattering media	ORC	ORC	ORC	ORC	ORC	ORC	ORC

| Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Service rules

The rules for use of the facilities in terms of <u>expenses</u> <u>reimbursement</u> and <u>profit</u> sharing differ from lab to lab:

- 1. Non-for-profit use only or /and
- 2. Non-for-profit use for national institutions or other bodies or /and

3. Commercial use for any external customer

No ready contracts templates.

Owners prefer to shape contract agreements for each particular case.

We recommend to use DESCA agreement template as a starting point to prepare such contracts. These recommendations and links can be found at http://econam.metamorphose-vi.org/facilities/access-rules

Equipment

	Elipsometers	Interferometers	Spectrometers	Microscopes	Radiation sources	Other
JENA		+	+	+	+	+
USPI	+		+	+	+	
RWTH	+	+	+	+	+	
NBTG			+	+	+	
TUI			+			
AMOLF	+		+	+	+	+
LPC		+		+	+	
KIT			+	+		+
INT		+	+	+	+	+
ORC			+	+	+	

| Helsinki University of Technology - TKK | Department of Radio Science and Engineering

.....

Related expertise

.......

	Elipsometry	Interferometry	Spectrometry	Microscopy	Fabrication	Other
JENA		+	+	+		+
USPI	+		+	+	+	
RWTH			+	+		
NBTG			+	+	+	
TUI			+	+		
AMOLF	+		+	+		
LPC						
KIT		+	+			
INT		+	+	+	+	
ORC			+	+		

| Helsinki University of Technology - TKK | Department of Radio Science and Engineering

.....

Statistics on the equipment and facilities Information collected at the ECONAM website

Number of the referred equipment items:

•	Spectrometers:	24
•	Ellipsometers: polarisation rotation	3
•	Interferometers: phase	6
•	Radiation sources:	33
•	Microscopes: internal geometry	36
•	Other:	4

- Number of the contact points: 10
- Number of the samples types combination: 68
- Frequency ranges of expertise: THz, Optical (IR, Visible)

| Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Suggested experimental characterization procedure

- 1. Check the external geometry and guess the internal geometry of your sample;
- 2. Choose the equipment owners with the corresponding expertise (or expected expertise) (Table 1.: Samples map on the ECONAM website);
- 3. Contact the owners and agree the conditions for possible cooperation ("Contacts and other information" database on the ECONAM website);
- 4. Decide what kind of parameters do you want to derive;
- 5. Agree the procedure of measuring (|R,T|, phases, polarization etc.) for your particular sample and source location;
- 6. Get the measured data and do post-processing
- 7. Apply the recommended technique to get desired derivative parameters (if there is such a technique).
- 8. Redo measurements (e.g. in case of iterative techniques) and make verification experiment if needed.

Some cautions for non-EM experts

- Some groups do not reveal the important information how do they determine proper characteristic parameters and how retrieve them. Usually to protect their know-how. Our approach: do not try to reproduce! Determine and post-process characteristic parameters yourself. Ask our experts to follow the scientifically recommended characterization procedures
- http://econam.metamorphose-vi.org
- Uf-f! My respect to those who survived this talk
- Do not blame those who has aslept

Appendix: references

- 1. Handbook of Ellipsometry, H. Tompking and E. Irene, Eds., NY, William Andrew Publishing, 2005
- 2. Eftekhari A. Nanostructured materials in electrochemistry, Wiley 2006
- 3. Roco M. et al. Nanotechnology Research Directions: Vision for Nanotechnology in the Next Decade, Kluwer 2004
- 4. Handbook of microscopy for nanotechnology, N. Yao, Z. L. Wang Eds, Kluwer 2005
- **5**. Liu Z. et al., Metamaterials (2008) 2, 45
- 6. Grigorenko A. et al., Nature (2005) 371, 448
- 7. C. Zhou, et al. J. Phys. Chem. C (2007) 111 (2), 514
- 8. Jiang P., Angewandre Chemie (Int. Ed.) (2004), 43, 5625
- 9. P. Moriarty, Rep. Prog. Phys. (2001) 64, 297
- 10. S. Linden et al. IEEE J. Select. Toptics Quant. Electr., (2006) 12, 1097
- 11. W. Zhang et al., J. Opt. A: Pure Appl. Opt. (2006) 8, 878
- 12. P. Malvany and L.L. Liz-Marchan, Top Curr. Chem. (2003) 22, 225
- 13. M. Tsuji, Chemistry Letters (2009) 38, 508
- 14. S. Reculusa et al., Chem. Mater. (2002) 14, 2354
- 15. S. Warren, Science (2008) 320, 1748
- 16. Y. Jiang, J. Phys.: Condens. Matter 15 (2003) 5871
- 17. Schmid, H., and Michel, B., Macromolecules (2000) 33 (8), 3042
- 18. Warren S.C., Science (2008) 320, 1748
- 19. Jacobs, H. O., and Whitesides, G. M., Science (2001) 291, 1763
- 20. Dolling G. et al., Optics Lett. (2006) 31, 1800.
- 21. Krauss T., Phys. Stat. Sol. (a) (2003) 197, 688
- 22 Barbic M., et al., J. Appl. Phys. (2002) 91, 9431
- 23. Tu Y., et al., Nano Letters (2003) 3, 107

references (cont. 1)

- 24. Y. Wang et al. Applied Physics Letters (2004) 85, 2607
- 25. A. Zvezdin and V. Kotov, Modern Magneto-optics and Magnetooptical Materials. Bristol, IOP, 1997
- 26. R. P. Cowburn et al., Europhys. Lett. (1999) 48(2), 221
- 27. J. Sheen, Meas. Sci. Technol. (2009) 20, 042001
- 28. Y. Hayashi, Electron. Commun. Japan, Part II: Electronics (2003) 86, 32
- 29. J. Krupka, Materials Chemistry and Physics (2003) 79, 195
- 30. M. Dienerowitz, Magnetism at optical frequencies, Diplomarbeit am Institut f
 ür Theoretische Festkorperphysik, Universit
 ät Karlsruhe, Defended: September 29, 2005
- 31. S. O'Brien and J.B. Pendry, J. Phys. Condens. Matter (2002) 14, 403
- 32. D.R. Smith, et al., Phys. Rev. B (2002) 65, 195104
- 33. S. O'Brien, Artificial Magnetic Structures, PhD thesis, Imperial College of Science, Technology and Medicine, Department of Physics, London. Defended: May 29, 2000.
- 34. N.G. Alexopoulos, C.A. Kyriazidou, and H.F. Contapanagos, IEEE Trans. Antennas Propag. (2007) 55, 254
- 35. N. Katsarakis, et al. Optics Letters (2005) 30, 1348
- 36. Schopper H., Z. Phys. (1952), 132, 146
- 37. M. Sucher, Handbook of Microwave Measurements, vol 2, Brooklyn Polytechnic Press 1963
- 38.V. N. Egorov, Instruments and Experimental Techniques (2007). 50, 143
- 39. J. Krupka et al., IEEE Trans. Microw. Theory Techn. (1999) 47, 752
- 40. J.A. Woollam et al., Proc. SPIE (2000) Vol. CR72 (Optical Metrology'2000), 3
- 41. S. Linden, et al., Science (2004) 306, 1351
- 42. Y. Wu et al. JEWA v. 22 343-352 2008
- 43. Y. Wu et al. PIER 70, 247-256 2007
- 44. Y. Wu et al. JEWA v. 22 1173-1179 2008

references (cont. 2)

- 45. J. Hu et al. IEEE Trans. Magnetics v. 42 1929-1931 2006
- 46. M. Lediu, O. Acher J. Magnetism and Magnetic Materials. V. 258-259 144-150 2003
- 47. D. Keavney, C.M. Falco, Journal of the Minerals, Metals and Materials Society E, (2000) 52, 6
- 48. G. Carlotti, G. Gubbotti, J. Phys. Cond. Matt. (2002) 14, 8199
- 49. F. Razan et al., Sensors and Actuators B (2005) 108, 917
- 50. O. Heavens, Optical Properties Of Thin Films, Batterworth, London 1955
- 51. Z. Kral, et al., Thin Solid Films 516 (2008) 8059
- 52. J. P. Rolland, et al., J. Am. Chem. Soc. (2004) 126 (8), 2322
- 53. G.E. Jellison, et al. Thin Solid Films (1998) 313/314, 193
- 54. G. E. Jellison, Thin Solid Films (2004) 450, 42
- 55. V.S. Merkulov, Optics and Spectroscopy (2007) 103, 629
- 56. V.N. Astratov, et al., Phys. Rev. B (1999) 60, R16255.
- 57. E. Yablonovitch, T.J. Gmitter, Phys. Rev. Lett. (1989) 63,1950
- 58. V.N. Astratov, et al., Phys. Status. Solidi. A (2000) 178, 565
- 59. M. Born and E. Wolf, Principles of Optics, Pergamon 1964
- 60. M. Mischenko et al., J. Quantitative Spectrosc. Radiat. Transfer (2009) 110, 323
- 61. I. Doron-Mor, et al., Chem. Mater. 2004, 16, 3476
- 62. G. Kalyuzhny, et al., Chemical European Journal (2002) 8, 3850
- 63. V.P. Drachev, et al., in: SPIE Optics Photonics, San Diego, CA, USA, 2007, pp. 6642–6632.
- 64. Z. Liu, Metamaterials (2008) 2, 45
- 65. H.-C. Scheer, et al., in: H.S. Nalwa (Ed.), Handbook of Thin Film Materials, vol. 5, Academic Press, New York, USA, 2002, 1 60
- 66.L. Feng et al., APL (2008) 93, 231105
- There is also a long additional references' list

