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Negative material parameters

D = ¢y, E = —¢ple, |E

B = pouH = _NOI/M“’H
where the relative material parameters ¢,., u, are real and negative

More generally, both Re{e,} < 0 and Re{u,} < 0.

materials with negative parameters
backward-wave media

double negative (DNG) media

materials with negative refraction index (NRI)
left-handed materials

Veselago media
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First DNG/Veselago material

R.A. Shelby, et al., Science, vol. 292, pp. 77-79, 2001.
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Quasi-static model of wire media

J 1 E,
D=¢E+P, where P= ]_w = Zojwa2 = _ZOm

Material relation:
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Wire medium + an artificial magnetic

3.5 4 45 5
Yacrora, My

Negative permeability background of wire medium = positive(!)
permittivity of wire medium
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Limitations on material parameters

For low-loss materials:

de(w) S0, de(w) _ 2(eg —€)
dw dw w
From here:
dwetw)) - dlnte))
dw dw
Also,
d
(w;u(jw)) > 2¢p — e(w)
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Energy density

Considering metamaterials with negligible losses (in some
frequency ranges):

d(we(w))

1 1 dwp(e))
v 2 dw |BI” +

H 2
w=wo 2 dw &l

w=wp

Assume that € and p are independent from the frequency (near
wo):

1 1
w = §€(CUO)|E|2 + §M(wo)|H|2
But w > 0 in passive media!

Conclusion: It is not possible to neglect dispersion if the material
parameters are negative.
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Filled capacitor

C=Ce (»)

_t_
i(t) = VoweelteRCanlelc T0 _ instability!

(d2
e(w) = eger = € (1 — w—é’) =
1 1 1

Z == = 5} = 5
] . . Ct
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Plane waves

Backward waves:

k x E=wuH, k xH = —weE

E? H?
S=ExH=—k=—k
wh we

Plane wave in a Plane wave in a usual
Veselago medium isotropic medium
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Negative refraction

vacuum vacuum

usual isotropic
medium backward-wave

k medium
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Negative refraction of beams, cont.

S. Maslovski, rejected submission to Phys. Rev. Lett., July 2002.

pulse rays
Z dk/d o

Propagation of a space-time modulated pulse: increasing moments
of time, from left to right.
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Plane-wave incidence
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Evanescent and propagating modes

X
kx
2 2 2 1.2
I_. K24k k2 =k
kZ
z
Source field
distribution

ko= B2 k2 k2= K2 k2, K =R R

Assuming no losses:

> ky < k= k, is real, wave propagates

» k; > k = k, is imaginary, wave decays (evanescent wave)
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Image transfer

4a¢¢¢¢ﬁ

E(z,y, 2 / E (ky, ky) eI ety /R=R2=K52) gp. e,

kE = k2 + k2, k < k: propagating, k > k: evanescent.
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Reflection and plasmons

Propagating waves

Consider an interface between free space and a Veselago material

(TM waves).
n+ o
ky
n=—,
we
kn
o= —,
wWeQ

_ 2
N+ Mo

kp = \/ K2 — k?
ke = \/ K3 — K}

In a Veselago medium ¢ < 0 and < 0, and k&, <0

(backward-wave medium).

If € = —€g and pu = —pg, we have k = —ko, k? = k3, = 1o, and

R=0,

T=1
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Reflection and plasmons

Evanescent waves

For evanescent waves

ko =\/ki — k} = —ja, k=\/k} — k= —jap, a>0, ay>0
—Jja —Jjao
= ) Mo =
we weqQ
When € = —¢p and p = —pug, we have purely imaginary wave
impedances such that n = —q for all k;, and a resonance occurs
T,R— o0
Surface mode (surface plasmon).
X
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Two-layer system
Tn
) bh e, N M

> d SRS
Dispersion equation:
k1

2 tan kg dy + K2 tan knody = 0, TM modes
€1 €2

21 tan ko1 di + 2 tan knody = 0, TE modes
1 Fna

kn12—\/ 1,2 k?2
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Phase compensation

Let k; = 0 and consider standing waves between two metal
boundaries

Eigenvalue equation

atl tan k1 d; + K2 tan kods = 0
k1 ko
Thin layers:

prdy + pady =0

N. Engheta, An idea for thin subwavelength cavity resonators using
metamaterials with negative permittivity and permeability, IEEE Antennas and
Propagation Lett., vol. 1, no. 1, pp. 10-13, 2002.
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Memory "device"

50 100 150 200 250

50 100 150 200 250

S.A. Tretyakov, S.I. Maslovski, I.S. Nefedov, M.K. Karkk3inen, Evanescent
modes stored in cavity resonators with backward-wave slabs, Microwave and
Optical Technology Letters, vol. 38, no. 2, pp. 153-157, 2003.
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Perfect lens

XA d
d-
E=E o ‘ a
Sourc d-f z
\u/ f

V. Veselago, 1967 (propagating waves); J. Pendry, 2000 (all modes).
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Reflection and transmission

Consider an EVANESCENT incident plane wave

E = Eyge /v—e0s [, — 2 p

jwpo "
where ag = /k2 — k3 > 0

1 (M — 9“—0> sinh ad
2 \apo oo

R =
cosh ad + % (M + %) sinh ad
2 \ apo Qo
1
T

B cosh ad + % (Z—Z% + %’:—2) sinh ad

For e = —¢g and pu = —pug we get RZO, T = e
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Two phenomena:

Propagating modes
— negative refraction

Evanescent modes
— plasmon resonance

Ryt — 00
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How it all works?

Let the lens be excited by a current line. The incident wave
“spatial spectrum"

[e.o]

. D) .
/ HéQ) {k (22 + zg)} eIhat gy — 2 iV Rk
k2 _ kQ

—00 x

Source just at the first interface. On the other side of the lens the
propagating waves become

\/;6“ Rokid g <k
K2 k2

But the evanescent part of the spectrum transforms like

2 B g
k2 — k2
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Next, to the focus:

2 o HIVR—k2d =i /K —k2d _ 2 ’ ky <k
\ K2 — k2 \ K2 — k2
2 oV Ik d ,—\/k2—k2d _ 2 7 ky > k
\ K2 — k2 \ K2 — k2
Limitations:

Reflections from the lens perimeter

Discrete structure of the lens material

>

>

> Losses
» Dispersion
>
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The integral for the field on the back side of the lens diverges

k?sz2

xT

T2
/76 Ke—k2d ikt gl — 00
k

Solution: When k; grows, at some point the effective medium
model becomes not applicable.

Page 26 / 26 | Helsinki University of Technology — TKK | Department of Radio Science and Engineering



