RWTH Print

1. Laboratory:  RWTH

postal address:
I. Physikalisches Institut
Physikzentrum
RWTH Aachen
52056 Aachen, Germany



address for deliveries:
I. Physikalisches Institut
Physikzentrum
RWTH Aachen
Otto-Blumenthal-Straße
(vormals Huyskensweg)
52074 Aachen, Germany

http://www.physik.rwth-aachen.de/institute/institut-ia/mitarbeiter/prof-dr-g-von-plessen/


2. Contact points:

Name: Prof. Gero von Plessen

Position: full professor, head of the Nanostructure Optics group

Email: gero.vonplessen"you know what"physik.rwth-aachen.de

Tel.: + 49 (0)241 8027161

Fax.: + 49 (0)241 8022331

 

Name: Prof. Matthias Wuttig

Position: full professor, head of the institute

Email: wuttig"you know what"physik.rwth-aachen.de

Tel.: + 49 (0)241 8027155

Fax.: + 49 (0)241 8022331


Name: Prof. Thomas Taubner

Position: junior professor, head of the group “Nanooptics and metamaterials”

Email: taubner"you know what"physik.rwth-aachen.de

Tel.: + 49 (0)241 8020260

Fax.: + 49 (0)241 8027156

 

3. Access rules:

Facilities availability for external users:

We are looking for external customers and will be happy to cooperate.

Expenses reimbursement type:

Non-for-profit use for national institutions or other bodies such as commercial use for any external customer

 Rules on cooperation:

http://www.desca-fp7.eu/

 

 4. Equipment

Interferometers:

6I1. - Bruker IFS 66 v/S    Fourier-transform spectrometer, Spectral ranges:
MIR: 400 to 8000 cm-1
FIR:  450 to 80 cm-1
 

Elipsometers:

6E1. - J.A. Woollam M2000UI, Variable angle spectroscopic ellipsometer, rotating compensator,    Spectral range: 0.73 to 5.13 eV

Spectrometers:

6S1. - UV-Vis spectrometer, Perkin-Elmer, Lambda 25, Transmission(i.e. extinction) and Reflectivity, two-beam spectrometer    Optical region: wavelength 200 nm – 1100 nm, resolution: approx. 1nm   
6S2. - UV-Vis spectrometer, Perkin-Elmer, Lambda 19, Transmission(i.e. extinction) and Reflectivity, two-beam spectrometer, Optical region: wavelength 200 nm – 3000 nm, resolution: approx. 1nm,  Limited data transfer due to obsolete software and corresponding operating system.
6S3. - L.O.T. Shamrock -Grating spectrometer equipped with CCD-detectors (visible region & NIR-region, Andor inc.), Optical characterisation, depending on chosen setup: Transmission, fluorescence; can be attached to optical microscope to investigate microscopic regions, e.g single nanoparticle light scattering or confined sample regions, Optical region: wavelength 200 nm – 3000 nm, resolution: 0.2 -- 1nm depending on chosen diffractive optics.   
            

Microscopes

6M1. - Digital Instruments Dimension 3100, Atomic force microscope    
6M2. - Olympus BX 61, Optical microscope, Equipped with objectives up to 100x magnification, bright-field/ dark-field, immersion microscopy (optional), transmission/ reflected-light microscopy; motorized stage; video camera
6M3. - Bruker Hyperion,    Optical + IR microscope, ATR-imaging, mapping, objectives up to 36x
6M4. - Neaspec s-SNOM, scattering-type scanning near field optical microscope, atomic force microscope   

Additional information: http://www2.neaspec.com//products.html

 
Radiation sources      

6R1. - Coherent inc, Verdi V6,  Laser,  c.w., wavelength: 532 nm, Power: max. 6,5 W, TEM-00 – mode, M2 < 1.1,

Additional information:http://www.coherent.com/Lasers/index.cfm?fuseaction=show.page&ID=1671

 
6R2. - Coherent inc, Mira “Optima” 900F, Laser,  c.w. or pulsed (repetition rate: 76 MHz), wavelength: 700 nm – 980 nm (tunable), Power: max. 1 W (depending on wavelength), Additional information: http://www.coherent.com/Lasers/index.cfm?fuseaction=show.page&ID=922&loc=0&title=Mira%20Optima%20900-F


 

6. Expertise

Spectrometry

1.    Microspectroscopy of nanosized / nanostructured samples:  Combination of grating spectrometer and optical (dark-field)microscope enables the spectroscopic measurement of microscopic sized sample regions, e.g. scattering characteristics of single nanoparticles, see e.g. [3]

a)    (optional) simultaneous laser-irradiation with the laser-light sources mentioned above, e.g. for photochemical/photochromic investigations
b)    (optional) optical tweezers setup for immobilizing and positioning of nanoparticles within an aqueous suspension
c)    planned: SERS-spectroscopy

2.    UV-Vis spectroscopy: Spectroscopic measurement of slabs/ layer systems / thin films / suspensions
a)    (optional) varying angle of incidence (no suspensions)
b)    (optional) for suspensions: temperature dependent 5°C – 100 °C
c)    (optional) simultaneous laser-irradiation with the laser-light sources mentioned above, e.g. for photochemical/photochromic/photothermal treatment

Microscopy

Expertise in optical microspectroscopy techniques in the visible regime of the light spectrum. Please, see “Spectroscopy – (1)” above 

References:

[1] Reismann et al. Reversible Photothermal Melting of DNA in DNA-Gold-Nanoparticle Networks. Small (2008) vol. 4 (5) pp. 607-610
[2] Dahmen et al. Optical and structural changes of silver nanoparticles during photochromic transformation. Appl. Phys. Lett. (2006) vol. 88 (1) pp. 011923-3
[3]
Sönnichsen et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. (2002) vol. 88 (7) pp. 077402

 

Table: Expertise by material type and sample geometry combinations:

Materials types
Slabs
Complex shape object Bulk samples or bars
Substrate layer(s) on substrate

Sub-wave
length
samples

 

Thin films

Isotropic materials
       R,T,A, optical;
S, Ch infrared
 R,T,A, optical;
S, Ch, infrared

 
S, Ch infrared S, Ch infrared
Photonic crystals        S, Ch, R, T infrared R,T,A optical; S, Ch, R, T infrared  S, Ch, R, T  infrared  S, Ch, R, T infrared
Quasicrystals
       S, Ch infrared  S, Ch infrared  S, Ch infrared  S, Ch infrared
Mesoscopic samples Nanostructured samples / layer systems showing photochromic behaviour (see[2]):
R,T,A, optical
           
Bianisotropic              
Anisotropic
inversion symmetrical
             
Active materials              
Controllable materials    Photothermally addressable suspensions of nanoparticles or nanoparticle systems (see [1]):
R,T, optical

 
     Nanostructured samples / layer systems showing photochromic behaviour (see[2]):
R,T,A, optical

 
   Nanostructured samples / layer systems showing photochromic behaviour (see[2]):
R,T,A, optical
Diffraction gratings              
Scattering media              
Single Metal nanoparticles or nanoparticle systems
   Aqueous suspensions of nanoparticles or nanoparticle systems (see [1]):
R,T,optical

 
 R,T,A, optical  S, Ch infrared  R,T,S, optical  S, Ch infrared  

Notation used here:

Frequency range: MHz, GHz, THz or optical
R - reflection coefficient amplitude or intensity;
T - transmission coefficient  or intensity,
P - phase information;
A - reflection and transmission on many angles of incidence;
E - ellipsometry data;
D - ray velocity direction or distortion (do not mix, please, with isotropic refraction index characterization);
S - internal structure investigation with microscopy (nanoscopy);
Ch - chemical properties investigation (metal or dielectric etc.);
Chi(2)/Chi(3) of the material

References:
[1] Reismann et al. Reversible Photothermal Melting of DNA in DNA-Gold-Nanoparticle Networks. Small (2008) vol. 4 (5) pp. 607-610
[2] Dahmen et al. Optical and structural changes of silver nanoparticles during photochromic transformation. Appl. Phys. Lett. (2006) vol. 88 (1) pp. 011923-3