Characterization techniques for nanostructured materials and their pitfalls

(ECONAM FP7 project) Lecturer: Constantin R. Simovski Dec. 10 2009

Classification of nanostructured materials (NSM) by their linear EM properties. Text

- Bulk passive structures (N>4-5 Unit Cells)
- Optically dense bulk structures d<<λ
- Non-resonant materials:
- Non-EM applications, EM applications,
- Thick films, optically large samples, Thin films and island films,
- Radiofrequency Magnetic Media and Nanomagnets, Magneto-Optical Media
- Plasmonic and polaritonic MTM:
- Dipole arrays, Multipole arrays, Resonant Photonic Crystals, Resonant scattering media
- Optically sparse bulk structures d~>λ
- Nanostructured Photonic Crystals, Scattering media (resonant and non-resonant)
- Surface passive structures (N<4-5 Unit Cells)
- d<< λ Dense gratings d~> λ Diffraction gratings,
- Non-resonant, Resonant
- Planar MTM, Vertically Aligned Nanorods
- Active nanostructures (of quantum dots and wires, dye-doped nanoporous and liquid crystals matrices, etc). Out of scope

Classification of NanoStructured Materials (NSM) by their linear EM properties. Chart

Page 3 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Explanation of the chart

Metamaterials

Scattering (non-transparent) media Adopted optical characterization: QE, QA

Bulk uniform concentration media

Adopted optical characterization: ϵ , radio characterization: ϵ,μ . (Bianisotropy is out of scope)

Photonic Adopted

Photonic crystals/EBG Adopted optical/ radio characterization: stopbands (bandgaps). Additionally: Brillouin dispersion diagram, Fresnel isofrequency surfaces.

Diffraction gratings Adopted optical characterization: $D(\lambda,m)$, $\Delta\lambda(m)$, Inorm.(λ ,m)

Mesoscopic layers Adopted optical characterization: QE, QA, $|R(\lambda)|$, $|T(\lambda)|$

Pitfalls (observations from literature survey)

 Referring a metamaterial to a wrong class. (Diffraction gratings, mesoscopic layers, photonic crystals described as a bulk medium sample)

100s papers. A book

• Ignoring the anisotropy. (Treating a component of material parameter tensor as an isotropic ϵ or μ)

10s papers. A book

Ignoring the bianisotropy. (Describing the bianisotropic material in terms of only ϵ and $\mu)$

Some papers

Ignoring spatial dispersion effects in dipole-type bulk metamaterials

10s papers. 2 books

 Ignoring the problem of the spread boundary of bulk metamaterial samples 100s papers.

100s papers. 3 books

Scattering media (incl. Plasmonic)

Page 6 Helsinki University of Technology - TKK Department of Radio Science and Engineering

Bulk plasmonic, $d << \lambda$ 1)g~d Dipole materials. 2 g<<d Photonic crystals

Scattering sample's characterization: absorption, extinction, scattering cross sections

Photonic crystals experimental characterization

Usually - validation of simulations!

- 1. Band-gaps detection [56].
- 2. For low-loss structures: phase(T) dispersion along ΓX [57]

Photonic crystals treated as media

Not acceptable!

doi:10.1038/nature07247

Three-dimensional optical metamaterial with a negative refractive index

Jason Valentine¹*, Shuang Zhang¹*, Thomas Zentgraf¹*, Erick Ulin-Avila¹, Dentcho A. Genov¹, Guy Bartal¹ & Xiang Zhang^{1,2}

angle of incidence (deg)

43

unit cell of p = 860 nm, λ of 1,475 nm, the index of refraction is approaching zero

ree space

PHYSICAL REVIEW B 78, 155102 (2008)

Light propagation in a fishnet metamaterial

Analytical theory of wave propagation through stacked fishnet metamaterials

R. Marqués.¹* L. Jelinek.¹ F. Mesa.² and F. Medina¹ 6 July 2009 / Vol. 17, No. 14 / OPTICS EXPRESS 11582

Acceptable

n_{Eff}

0

PHYSICAL REVIEW B 67, 035109 (2003)

66 90

k_y (units of $2\pi/a$)

Photonic approach to making a material with a negative index of refraction

Gennady Shvets

$$\epsilon_{\rm eff} = \left(\frac{1}{\chi_p} + \frac{1 - \cos\chi_v b}{\chi_v \sin\chi_v b}\right) \left(\frac{1}{\epsilon_c \chi_p} + \frac{1 - \cos\chi_v b}{\chi_v \sin\chi_v b}\right)^{-1}$$

$$\chi_v = \sqrt{\frac{\omega^2/c^2 - k_x^2}{\chi_p}},$$

$$\chi_p = \sqrt{k_x^2 - \epsilon_c \omega^2/c^2}$$

Fishnets

 k_x (units of $2\pi/a$)

$$\mu_{\rm eff} = 1 - \frac{c^2 \chi_x}{\omega^2 \sin \chi_v b} \left(\frac{1}{\epsilon_c \chi_p} + \frac{1 - \cos \chi_v b}{\chi_v \sin \chi_v b} \right)^{-1},$$

Z≠√µefflεeff ABC are required

Helsinki University of Technology - TKK Department of Radio Science and Engineering

Photonic crystal mimics the homogeneous medium only under

2 conditions:

10

5

0

-5

y (Jum)

Geom. isotropic lattice

PRL 97. 073905 (2006)

Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability

T. Decoopman,^{1,2} G. Tayeb,¹ S. Enoch,¹ D. Maystre,¹ and B. Gralak¹

Special environment

electric field when the structure is surrounded by a homogeneous material with $\varepsilon = 5.7$ and $\mu = 0.175$ (both positive), i.e., a material having the same impedance as in our interpretation is that in our case the photonic crystal mimics a homogeneous material with $\mu_{eff} = 1/\epsilon_{eff} \neq$

Vacuum surround. Negative refraction but no subwavelength effects

Special medium surround: a weakly subwavelength image arises

Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Diffraction gratings

Characterization of diffraction gratings

- Normal incidence λ>d, oblique incidence λ>2d:
- |R| or |T| (λ). Plasmonic gratings: absorption at Wood anomalies Wa=1- |R|² |T|².
- Normal incidence λ<d, Oblique incidence λ<2d:
- Angular dispersion $D(\lambda, m)$, where m=±1.. ±[d/ λ] grating spectral orders.
- 3. Free intervals of dispersion $\Delta\lambda(m)$. 4. Normalized intensity distribution $Imax(\lambda,m)$.

Diffraction gratings treated as bulk media

Nanofabricated media with negative permeability at visible frequencies

Forbidden

Helsinki University of Technology - TKK Department of Radio Science and Engineering

Vertically aligned nanorods

Other vertically aligned Nanorods (InP, TiO2 etc)

Plasmonic (gold) nanorods

CNT

Modest slow-wave factor

Can be treated as uniaxial dielectric if period<< λ

Huge slow-wave factor (>100)

Wire medium ABC are obviously required

VASE

Variable-Angle-Spectrometric Ellipsometry

Known fitting procedure implies:

- 1. Bulk medium (at least 5-6 molecules across)
- 2. Not metamaterials (µ=1)

Characterization techniques for plasmonic and CNT nanostructured surfaces

Reported experiments:

MTM with planar plasmonic elements, N=1-2: a) Used method: NRW. Results: Not adequate.

b) Used method: spectroscopy. Results: Incomplete.

1. Grids of verticaly aligned plasmonic nanorods. Spectroscopy. Incomplete. Verticaly aligned CNT. No results

Reported theory:

1. Holloway et al.: surface electric and magnetic tensor susceptbility. Simovski: electric and magnetic grid impedance.

Not sufficiently developed and never checked

2. Plasmonic nanowires and CNT.

Wire medium models with tensor $\mathcal{E}(q)$. Insufficiently developed: (no additional boundary conditions)

Nicholson-Ross-Weir (NRW) technique in optics

NRW method (theory for uniform slabs)

Replace the finite-thickness lattice by an "equivalent" continuous layer

NRW was developed NOT for metamaterials! Equivalence for a given case≠adequacy

Being applied for

- 1) Non-bulk (surface) structures
- 2) Nanostructured photonic crystals and even
- 3) Bulk nanostructured media with resonant constituents

these method lead to "beating the physical limits"= violation of physical laws.

Results of wrong applying the NRW method

- Violation of locality (passivity, causality, II law of thermodynamics)
- Extracted ϵ and μ are not applicable for oblique incidence, for narrow wave beams, for evanescent waves
- Polaritons are neglected

Similar results:

100s papers and 3 books

Experimental characterization for bulk plasmonic dipole MTM and plasmonic photonic crystals

Reported experiments:

- 1. Dipole plasmonic MTM. Used method: NRW. Results: indequate
- 2. Plasmonic photonic crystals. Used method: NRW. Results: indequate
- 3. Plasmonic diffraction gratings. Used method: ellipsometry. Results: indequate

Reported self-consistent theories:

1 Dipole plasmonic MTM:

- 1.1 Bulk (Simovski): Not sufficiently developed, not checked 1.2 Planar (Holloway et al.): The same
- 2. Plasmonic photonic crystals:
- 2.1. Gralak et al. Weakly developed, 2.2 Shvets-Urzhumov: Insufficiently developed, not checked 2.3 Silveirinha: The same

Reported controversial theory: Arbitrary resonant lattices (Felbaq et al.). Difficult to accept. Not checked

Correct characterization of dipole-type bulk metamaterials (no experimental results yet)

ISSN 0030-400X, Optics and Spectroscopy, 2009, Vol. 107, No. 5, pp. 726–753. © Pleiades Publishing, Ltd., 2009. Original Russian Text © C.R. Simovski, 2009, published in Optika i Spektroskopiya, 2009, Vol. 107, No. 5, pp. 766–793.

> PHYSICAL OPTICS

Material Parameters of Metamaterials (a Review)

C. R. Simovski

Transition layers: refraction index+ wave impedance

Same parameters as for the infinite lattice

Ткк

Antiresonance explanation

Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Bulk multipolar arrays

↑ k (3)

"Artificial magnetic" when and only when: $\omega = \omega_{\text{mag}}$ and $\mathbf{q} = q\mathbf{y}_0$. If $\mathbf{q} = q\mathbf{x}_0$, this is an artificial dielectric.

In all other cases – more material parameters are needed.

Never "artificial magnetic" k(1) - M + Q k(2) - another Q k(3) - third Q

Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Pitfall of artificial magnetism in multipolar media

- "Magnetism" due to phase shift between two elements (A and B) of an open inlcusions – 100s papers
- Quadrupoles and octupoles can be neglected only for

In other cases (dual bars, U-shaped SRRs etc)

$$D_{i} = \varepsilon_{ij}' E_{j} + j\xi_{ij}' H_{j} + b_{ijkl} \nabla_{k} \nabla_{l} \mathbf{E}_{j},$$
$$B_{i} = \mu_{ij}' H_{j} - j\xi_{ji}' \mathbf{E},$$
Or

$$D_i = \varepsilon_{ij}(\omega, \mathbf{q})E_j, \quad \varepsilon_{ij}(\omega, \mathbf{q}) = \varepsilon_{ij}^{(0)}(\omega) + j\gamma_{ijk}(\omega)q_k + j\gamma_{ijkm}(\omega)q_kq_m + \dots$$

 $\mathbf{H} = \boldsymbol{\mu}_0^{-1} \mathbf{B}.$

In both cases ABC are required!

Helsinki University of Technology - TKK | Department of Radio Science and Engineering

Handbook of Artificial Materials Vol I: Phenomena and Theory

Material parameters and field energy in reciprocal composite media

- 1.3 Media with weak spatial dispersion. 1-1 Definition of weak spatial dispersion + Polarization current in media with weak spatial dispersion * Electric and magnetic polarization currents + Non-covariant form of material equations covariant in the first order of WSD • Material equations covariant in the second order of WSD • Special cases of material equations in media with WSD

C. Simovski and S. Tretyakov Helsinki University of Technology

Metasurfaces (no experimental results, yet)

Electric and magnetic surface susceptibilities

Available online at www.sciencedirect.com

Metamaterials 3 (2009) 100-112

Metamaterials

www.elsevier.com/locate/metma

A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials

Christopher L. Holloway^{a,*}, Andrew Dienstfrey^b, Edward F. Kuester^c, John F. O'Hara^d, Abul K. Azad^d, Antoinette J. Taylor^d

MTM messcopic olayer (no cross-polarization and spatial dispersion)

Conclusions

- There are many pitfalls in the NSM characterization
- Classification of NSM is very important to select the proper characterization parameters to retrieve
- To explain the physical meaning of retrieved parameters is very important
- There are self-consistent theories of NSM characterization, however not sufficiencly developed and never experimentally checked!
- For some NSM even no any theory yet!
- Inadequate characterization method (wrong interpretation) –
- impasses in the theory and insufficient practical achievements –
- metamaterials are compromised as such no more support

