
Ph.D. School at META’08
Marrakech, Morocco, 5-6 May, 2008

Homogenization of Structured Materials 

Mário G. Silveirinha

© 2005, it - instituto de telecomunicações. Todos os direitos reservados.



Why “homogenization”?y g

• Homogenization may enable a simplified description of very• Homogenization may enable a simplified description of very    
complex systems formed by many atoms (in case of natural 
media) or inclusions (in case of structured materials).

Liu et al., Nature Materials, DOI: 
10.1038/nmat2072
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Basic notions: 

• Let F be some physical entity The macroscopic (spatiallyLet F be some physical entity. The macroscopic (spatially 
averaged) <F> is defined as,

where f is a test function.
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Example (1D): p ( )
 E x  E x

x x

Test function:  
1/     if / 2
0          otherwise

D x D
f x
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Properties of the test function:p

• Real valued.

• Nonzero in some neighbourhood of the origin. 

• Integral over all space is unity:   3f d r rg p y

• The support of the test function must be greater than the 
characteristic dimension of the inclusions, and much 
smaller than the wavelength

 

smaller than the wavelength.

Example: (2D) p
R=1
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A different perspective of spatial averaging:p p p g g

convolutionconvolution

  F r  F r
 f r F r  F r

The test function f may be regarded as the “impulse response” 
of a linear s stem Th s the spatial a eraging operation ma beof a linear system. Thus, the spatial averaging operation may be 
regarded as filtering.
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Different perspective of spatial averaging (contd.)p p p g g ( )

 f r
 F r  F r

 f

1
 where 

 
    3

3
1

2
jF f F e d


  k.rr k k k      3jf f e d  k.rk r r

Since the spatial average procedure may be regarded as low 
pass filtering, we may choose f as an ideal low pass filter:

 
1,            . .
0 otherwise

B Z
f


 


k
k

0,           otherwise

Later, we will see that this can be useful…
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“Microscopic” Maxwell’s Equationsp q

E and B – “microscopic” electric and induction fields

J – microscopic external density of currentJe microscopic external density of current

r relative permittivity of the structured material
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Homogenized Maxwell’s Equationsg q

      3f d   E r E r r r r     f

       3f d    E r E r r r r E r       f d     E r E r r r r E r

     E r E r

The spatial derivatives commute with the averaging operator!

Thus, the structure of Maxwell’s equations is q
preserved by the homogenization process.
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Homogenized Maxwell’s Equations (contd.)g q ( )

– induced “microscopic”  current relative to the host 
medium

The key problem in homogenization theory:

How to relate  with the macroscopic fields  and ?dJ E B
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Physical insights into     3
d df d   J r J r r ry g

Small dielectric scatterer: The microscopic density of current induced



Small dielectric scatterer: The microscopic density of current induced 
in a small scatterer may be approximated by:

dJ

electric dipole momentp electric dipole moment
magnetic dipole moment

e

m 

p
p

Thus, for a collection of obstacles we have that:
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Classical Constitutive Relations
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Macroscopic Electromagnetismp g

“Classical” theory is based on the decomposition:y p

j  J P M 0 D E P

Spatial average of the

...d j  J P M 0

0
 

B
H M

Spatial average of the 
microscopic currents

0

j  E B

j H J De j  H J D
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Local Linear Media

For local linear (bianisotropic) media:( p )
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Some problems with the application of classical 
h i ti th i t t t i lhomogenization theories to metamaterials:

• The characteristic dimensions of most metamaterials is about• The characteristic dimensions of most metamaterials is about 
one tenth of the wavelength. And this is not only because of 
fabrication limitations…

Example: Split Ring Resonators!
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[why ?][ y ]

To get a strong magnetic response the perimeter of the rings 
must be comparable to /2must be comparable to /2.

(other options at microwaves: use lumped elements, distance between rings very small, rings 
printed on high dielectric substrates).p g )

This is understandable… we are trying to obtain a y g
material with a magnetic response from a metal which 
is a material with completely different properties (=-).
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Some problems with the application of classical 
h i ti th i t t t i l ( td )homogenization theories to metamaterials (contd.)

• The relatively large electrical size of the inclusions implies that• The relatively large electrical size of the inclusions implies that 
higher-order multipoles (quadrupole moment, etc) may not be 
negligible…

higher order multipolesd j  J P M

• It may not be possible to relate the electric field with the 
polarization vector through local relations, i.e. the material 
response may be nonlocal.response may be nonlocal.

The homogenization of metamaterials may thus 
i hi i d d l h d hrequire more sophisticated and complex methods that 

can take into account and describe these phenomena.
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Spatial Dispersion

18

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



[Time dispersion][ p ]

Why time dispersion?

E

www.sr.bham.ac.uk/xmm/fmc2.html

The electric charges cannot respond 
instantaneously to an applied electric field.
(F h i it ti th l t i di l t(For harmonic excitation, the electric dipole moment 
becomes out of phase with the applied electric field.)
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Spatial dispersionp p

Spatial dispersion emerges when the response of the basic 
inclusions does not depend uniquely on the behaviour of theinclusions does not depend uniquely on the behaviour of the 
fields in a small neighbourhood.

In other words, the electromagnetic fields at a given point of 
space may influence significantly the response of an inclusion 
situated at a significant distance from that point (larger than the g p ( g
characteristic microscopic dimension of the material).
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Spatial dispersion (contd.)p p ( )

Local material:

   0 ( 0 )e ep p E
E

ep

Nonlocal material:

ep
       1 2all space
0 ( ) ( 0 , , ,...)e e e p p E p E E r E r

E
       

all space

 2E r 1E r
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Understanding spatial dispersiong p p

The wire medium has 
strong spatial dispersion 
even for extremely large y g
wavelengths
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Understanding spatial dispersion (contd.)g p p ( )

The electric current alongThe electric current along 
the wire depends on the 
electric field along the 
whole axis and not only

I

whole axis, and not only 
on what happens in some 
neighbourhood.

1
e

Ip
j A


cellj A

The flow of electric charges may be regarded as a slow 
diffusion process which originates the nonlocal 

response
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Constitutive relations for spatially 
dispersive media
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Some preliminary considerationsp y

For spatially dispersive materials the decomposition of the p y p p
average microscopic current into mean and eddy currents is not 
meaningful. 

...d j  J P M (not interesting)

The problem is that P and M cannot be related with the 
macroscopic fields through local relations.p g

Besides that, the higher-order multipoles may not be negligible.
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Constitutive relations

/ jP J /

   /
g d j

j







 

P J

P M

0 gj  E H0 gj 

g e gj  H J D

The effect of both the electric and magnetic dipole moments (as 
well as the effect of all other multipoles) is described by the p ) y
(generalized) electric displacement vector.
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Constitutive relations in periodic linear media:p

      3
0 .g e

d     P r r - r E r r

Dielectric 

In spatially dispersive media all the effects can be described solely by a 

function

p y p y y
dielectric function, being unnecessary to introduce a magnetic permeability, 
and/or magnetoelectric tensors.
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Constitutive relations in the spectral domain:p

The Fourier transform of the macroscopic electric field is:

where

In the spectral domain the constitutive relations become:

    3ˆ, , je d    k.rk r k r
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Macroscopic Maxwell’s Equations in the Spectral 
d idomain:

 k E H 
0 g k E H

 , .g ej      k H J k E  

Important remark:

• Both  and k are independent variables of the dielectric function. This 
should be very clear from the definition.

S ti thi i f f i b f l• Sometimes this is a source of confusion, because for plane waves 
and k are related by a relation of the type               .    k
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Calculation of the Dielectric Function
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How can we compute the dielectric function of a 
i di t t d t i l?periodic structured material?

Unit cell:


 

k E B 

1Bk 
 

0

1 , .ej
 

  
   

Bk J k E 

This should be valid 
for every external 

applied current
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Remember the definitions: 
 

k E B 

 
0

1 , .ej
 

  
   

Bk J k E


 

E and B – “microscopic” electric and induction fields

J microscopic external density of currentJe – microscopic external density of current

      3f d   E r E r r r r     f dE r E r r r r

    3je d  k.rE k E r r

Thus,

     fE k E k k      fE k E k k
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Main idea:

To define the dielectric function so that the system,


 

k E B 

 
0

1 , .ej
 

  
   

Bk J k E


 

is verified for a microscopic external current of the form:

,av
j

e e e k.rJ J

for arbitrary 
t t t
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Characterization of the macroscopic fields for a 
i i t ith th Fl t tmicroscopic current with the Floquet property:

Unit cell:

av
j

e e e k.rJ J

Solution of the problem is 
of the form:

,ave e
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Characterization of the macroscopic fields for a 
i i t ith th Fl t t ( td )microscopic current with the Floquet property (contd.):

Choosing the test function as an ideal low pass-filter  
1,            . .
0,           otherwise

B Z
f

  


k
k

     3
av2   E k E k k

av
je k.rE E
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Characterization of the macroscopic fields for a 
microscopic current with the Floquet property p q p p y
(contd.):

Thus, we conclude that for electromagnetic fields with the Floquet 
property the macroscopic fields may be identified with the zero-order 
Floquet harmonics:

av
je k.rE E

Floquet harmonics:

  3
av

cell

1
V

je d


  k.rE E r r

av
je k.rB B

31 j d k rP J

  rrBB k.r 3

cell
av V

1 de j




3
,av

cell

1
V

j
g de d

j




  k.rP J r

3
av

1 je d  k.rP J r

 
 

0 av ,av

av      = , .

j
g g

j

e

e



 





  k.r

k.r

D E P

k E
,av

cellVe ee d
j 
P J r

,av
j

e ej e  k.rJ P
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Microscopic theoryp y

The previous analysis implies that for an external source associated 
with a phase-shift defined by k, the dielectric function should be definedwith a phase shift defined by k, the dielectric function should be defined 
consistently with the relation:

Unit cell:

  av 0 av ,av, g   k .E E P

je k.rJ J ,ave e eJ J

3
,av

cell

1
V

j
g de d

j




  k.rP J r
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Procedure to compute the dielectric functionp

The applied current is taken equal to: ,av
j

e e e k.rJ J

• For each  and k, the microscopic Maxwell-Equations are 
solved for ,av ˆe iJ u

• With the computed microscopic fields we calculate: 
1
   3

av
cell

1
V

je d


  k.rE E r r

31 je d  k.rP J r,av
cellV

j
g de d

j 

 P J r

• Finally, using the obtained results (i=1,2,3) the dielectric y, g ( , , )
function is obtained by imposing that:   av 0 av ,av, g   k .E E P
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Some remarks

• The homogenization problem is a source driven problem! It is 
not an eigenvalue problem.g p

• The computational domain may be taken equal to the unit cell.The computational domain may be taken equal to the unit cell.
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Plane wave solutions

There is a one to one relation between plane waves in the homogenized 
medium and the Floquet eigenmodes of the structured material.
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Homogenization of a lattice of electric 
dipoles
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Periodic lattice of electric dipolesp

Figure from P A Belov et at PHYSICALFigure from P.A. Belov, et at, PHYSICAL 
REVIEW E 72, 026615 2005

Microscopic model:
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Homogenization problem:g p

A li d lApplied external 
current

The solution of the homogenization problem can be written in closed 
analytical form in terms of the lattice Green dyadic that verifies:
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Microscopic electric field:p
Still unknown
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The local field:

Self contribution is 
removed

The electric dipole moment of each particle can now be calculated 
using the microscopic equation:using the microscopic equation:
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Generalized Lorentz-Lorenz formula:

Can be related with the 
macroscopic field

is the interaction dyadic
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Generalized Lorentz-Lorenz formula (contd.):( )

macroscopic fieldmacroscopic field
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The interaction dyadic:y
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The interaction dyadic (contd.):y ( )

A classical result for highly symmetric lattices:

The imaginary part of the interaction constant can be evaluated in 
closed analytical form:
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Calculation of the dielectric function:

Generalized Clausius-
Mossotti formula
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Some conclusions:

• The dielectric function of lattice of electric dipoles can be
written in terms of an interaction dyadic and of the electric
polarizability of an individual inclusion.

• The interaction constant may depend on the wave vector due
to the intrinsic granularity of the material. This may result in 
strong spatial dispersionstrong spatial dispersion.

• It is possible to generalize the classical Lorentz-Lorenz and 
Cl i M tti f l t ti ll di i t i lClausius-Mossotti formulas to spatially dispersive materials.
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Generalized Lorentz-Lorenz formulas for point 
ti l ith b th l t i d tiparticles with both electric and magnetic response:

More details in:
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Application of the results to a material formed by 
l i hplasmonic spheres:

www.qcif.edu.au/research/Images/sc.gif
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Homogenization model:g

2

1 321 3 r
r




 

For propagation along coordinate axes:
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Effective permittivity:p y
/100  at rR    

/ 2.1R a
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Band structure:
B k dBackward wave 

propagation
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Isofrequency contours:q y

Propagation in the xoy plane, with E along z. The contours specify the value of / r 
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Application of the results to a uniaxial material formed 
b SRRby SRRs
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“Classical model”
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Model obtained taking into account spatial dispersiong p p

Rings are modelled as particles with a dipole-type magnetic
response.p

Note: the effects of spatial dispersion could be described using uniquely a dielectric function HoweverNote: the effects of spatial dispersion could be described using uniquely a dielectric function. However, 

here we choose to define a spatially dispersive permeability to see better the connections with the classical 

model.
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The interaction constant:

Orthorhombic lattice with a_z = 0.5a and rings with R=0.4a.
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Effects of spatial dispersion:p p

Isofrequency contours
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Regularized Formulation
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A Mathematical Difficulty…
Unit cell:

y

Microscopic Equations:

j  E B

,av 0
j

e re j   k.rB J E,av 0
0

e rj


Applied current

Problem:

If (,k) are associated with an electromagnetic mode the problem 
may not have a solution (a resonance is hit and the fields may growmay not have a solution (a resonance is hit and the fields may grow 
without limit).
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Relation between the applied current and the induced 
l t i fi ldaverage electric field

It can be proven that the applied current is related to the induced 
i i d i l t i fi ld f ll

    av av
ˆ ˆ j

e j e   k.rJ P E P E

microscopic and macroscopic electric field as follows:

 

where

    3

0 cell

ˆ 1 1
V

j
r e d






  k.rP E
E r

  1av av
av av2

0 cell

ˆ 1 1
V 


P E

G .E   1 2 2
av cellV k    G I kkwith
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A mathematical trick:

j  E B

Microscopic Equations:
j  E B

Regularized microscopic equations:

j  E B

,av 0
0

j
e re j 


  k.rB J E

j

    av av 0 0
0

ˆ ˆ j
rj e j   


   k.rB P E P E E

Source of fields is ,aveJ Source of fields is avE

For corresponding Je,av and Eav the solution of the two problems is the same!

However the kernel (null-space) of both problems is different. In fact, 
l t ti d t l ti f th h l i delectromagnetic modes are not solutions of the homogeneous regularized 

problem.
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Integral-differential system:g y

Regularized microscopic equations:

j  E B

    ˆ ˆ jj e j      k.rB P E P E E

Integral-differential 
source problem

    av av 0 0
0

rj e j   


  P E P E E

• For each  and k we solve the microscopic Maxwell-For each  and k, we solve the microscopic Maxwell-
Equations with av ˆ iE u

  av 0 av ,av, g   k .E E P• The dielectric function is obtained from:

1 3
,av

cell

1
V

j
g de d

j




  k.rP J r
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Integral representation of the electric field:g p
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Solution based on the MoM:

 ,n kw r - set of expansion functions 
for the induced microscopic 
current

     , 3 3
, ,

,0 cell

1,
V

eff m n j j
m n

m n
e d e d


 


 


 

    k.r k.r
k kk I w r r w r r

         3 2 3 3
, , , , 0 ,

1
1m n m n m p n

r

d d d 
  

  

   
  k k k kw r .w r r w r . G r r .w r r r

Green function
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Application to wire media:pp

70

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Application to wire media (contd.):pp ( )

Within the thin wire approximation it may be assumed that the 
electric current flows along the direction of the wires and iselectric current flows along the direction of the wires and is 
uniform in the transverse section. 

Thus a single expansion function may be sufficient to describe 
the electrodynamics of wire media.the electrodynamics of wire media. 
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The dielectric function:
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Similar ideas can be used to homogenize other 
t i lmaterials:

Connected WM

2 2

2 2 2 2
pc 


 

   
kkI I2 2 2 2
0 /k l c   
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Similar ideas can be used to homogenize other 
t i l (II)materials (II):

Non-Connected WMNon Connected WM

2 2 2

2 2 2 2 2 2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1

/ / /
p p p

x x y y z zk k k
  


    

             u u u u u u2 2 2 2 2 2 2 2 2/ / /x x y y z z
x y zc k c k c k  

              

74

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Similar ideas can be used to homogenize other 
t i l (III)materials (III):

Array of helices:Array of helices:
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Extraction of the local parameters from 
the nonlocal dielectric function
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Is it possible to extract local parameters from the 
l l di l t i f ti ?nonlocal dielectric function? 

Why local parameters?

• The number of parameters that characterize the material is 
smaller.smaller.

 k        

Nonlocal model Local model

 ,  k

Defined for every k

       , , ,r r       

I d d t f kDefined for every k Independent of k
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Is it possible to extract local parameters from the 
l l di l t i f ti ? ( td )nonlocal dielectric function? (contd.)

Why local parameters?

• Problems involving interfaces! The classical boundary 
conditions can only be applied to local media.conditions can only be applied to local media.

inck
i

Local material

78

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Relation between local and nonlocal parametersp

For a nonlocal medium:

  0, . g   k E E P  

For a local medium:
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Relation between local and nonlocal parameters 
( td )(contd.)

But sinceBut since,

it i f d th tit is found that:

80

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Some remarks

• A local material can be characterized using the traditional 
constitutive relations as well as the “nonlocal” constitutive 
relations. For unbounded media, both phenomenological models 

di t th h ipredict the same physics.

• In particular, the plane wave solutions and macroscopic electric 
d i d i fi ld i d d f h id d d land induction fields are independent of the considered model.

• The nonlocal dielectric function can be obtained from the local 
parameters using the formula:
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Some remarks (contd.)( )

• It should also be clear that a material is local (and such that, with the 

exception of the dipole moments, all the multipoles moments are negligible) only if the 
nonlocal dielectric function is a quadratic form of the wave 

tvector.
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How to extract the local parameters from the nonlocal 
di l t i f ti ?dielectric function?

• The local parameters can be meaningful only if (weak spatial 
dispersion):

(Taylor series at k=0)
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How to extract the local parameters from the nonlocal 
di l t i f ti ? ( td )dielectric function? (contd.)

•The magnetoelectric tensors are related to the first order 
derivatives of the dielectric function.

•The magnetic permeability is related to the second order 
derivatives of the dielectric function.
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Local permittivity:p y

Very simple:

(but we also need to know the magnetoelectric tensors and permeability…)

Materials with a centre of inversion symmetry:

   
0

,r
  


 0
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Magnetoelectric tensors:g

It can be verified that for dielectric inclusions, the first 
order derivatives are anti-symmetric tensors.order derivatives are anti symmetric tensors.

  , ,
x y zk k k
    

  
3 3 = 9 independent parameters

86

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Magnetoelectric tensors (contd.):g ( )

Spatial dispersion of first order can be described exactly 
using the local model.
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Magnetic Permeability:g y



How to choose mu such that thisHow to choose mu such that this 
is true?

It can be verified that for dielectric inclusions, the secondIt can be verified that for dielectric inclusions, the second 
order derivatives are symmetric tensors.

A problem:A problem:
2 2 2 2 2 2

2 2 2, , , , ,
k k k k k k k k k
          

        x y z x y x z y zk k k k k k k k k        

6 6 = 36 independent parameters
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Why such problem?y p

More rigorously,

1 1 1 1 1
g Q O S        P P M

,Q O - electric quadrupole and octopole moments

2 6 2g Q
j j 

S - magnetic quadrupole moment

Spatial dispersion of second order is not only due to the magnetic 
polarization, but also due to the quadrupole moments
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Solutions?



Too many scalar equations (36)  and only a few scalar unknowns (6)…

Possibilities:Possibilities:

• Consider only a small subset of the available equations…

• Least square solution…

• Extract the effective parameters associated with quadrupole               
moments (too complicated!)
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Example: Composite medium with SRRs and metallic 
iwires

x

y

z   ˆ ˆ ˆ ˆ ˆ ˆr x x y y zz z z    u u u u u u

“Local” parameters:

  y y

  , ,ˆ ˆ ˆ ˆ ˆ ˆr r xx x x r yy y y z z     u u u u u u
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Extraction of the “local” parameters:p

Assuming,

  , ,ˆ ˆ ˆ ˆ ˆ ˆr r xx x x r yy y y z z     u u u u u u

g,

  ˆ ˆ ˆ ˆ ˆ ˆr x x y y zz z z    u u u u u u

We obtain,
1  2

2
2

0 0

1
11

2

zz
yy

xk

 













k

   0
0

lim ,r k
  
 k
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Extracted parameters (I): yp ( )
x

z

a)- MSRR+Wires

b)- only MSRR

c)- only wires

x ya a a 

0.5za a

0.01wr a

0.4medR a
0.125d a
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Band structure:

a)- MSRR+Wires

x ya a a 

0.5za a

0.01wr a

0.4medR a
0.125d a
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Band structure:

b)- only MSRR

x ya a a 

0.5za a

0.01wr a

0.4medR a
0.125d a
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Extracted parameters (II):
y

p ( )
x

z

a)- Elliptical 
MSRR+Wires

b)- only elliptical 
MSRRMSRR

c)- only wires

xa ax

2ya a

0.5za a

0.4xR a

0 125d a

0.01wr a

x

0.8yR a
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0.125d a



Band Structure:

a)- Elliptical 
MSRR+Wires

xa a

2ya a

0.5za a

0.01wr a

z

0.4xR a

0.8yR a

0.125d a

w
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Band Structure:

b) only ellipticalb)- only elliptical 
MSRR

xa a

2ya a

0.5za a

0.01wr a

z

0.4xR a

0.8yR a

0.125d a

w
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Extracted parameters (III) (metasolenoid):p ( ) ( )

x ya a a 

0.25za a

0.01wr a

0.4medR a
0.125d a
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Band Structure:

x ya a a 

0.25za a

0.01wr a

0.4medR a
0.125d a
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Example II: Array of Helicesp y
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Local parameters (propagation in xoy plane)p (p p g y p )
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Local parameters (propagation in xoy plane) (contd.)p (p p g y p ) ( )
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Application of the local parameters in a scattering 
bl ( i l i l b d diti )problem (using classical boundary conditions)
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Problems involving interfaces
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Problems involving interfaces of spatially dispersive 
di diffi lt t lmedia are difficult to solve…

inck
i

Nonlocal material k Nonlocal material ,  k
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Problems:

•The dielectric function is only defined for an unbounded•The dielectric function is only defined for an unbounded 
periodic medium.

•The dielectric function is defined in spectral domain but a•The dielectric function is defined in spectral domain, but a 
problem involving interfaces is formulated in space domain.

 ,  k Only makes sense in the spectral domain 
(unbounded periodic material)

 E r Only makes sense in the space domain

k and r are dual Fourier variables and cannot appear in the 
same expression!
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Problems (contd.):( )

Maxwell’s equations in the space domain for a spatially 
di i t i ldispersive material:

0 gj  E H

    2ˆ .g e j d       H J r -r E r r   g 
(valid only for unbounded periodic materials!; we do not even know how to extend this expression for finite blocks of a material!)

Quite scary!
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Some reasonable assumptions:p

inck
i

Nonlocal material ,  k

For plane wave incidence the field inside the nonlocal material isFor plane wave incidence, the field inside the nonlocal material is 
written in terms of the plane waves modes supported by the 
unbounded periodic material.p
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More problems:p

I l ti ll di i t i l t “• In general, a spatially dispersive material may support “new 
waves”, as compared to the ordinary case in which only two 
plane waves are supported for a fixed direction of propagation.plane waves are supported for a fixed direction of propagation.

• These extra degrees of freedom associated with spatially 
dispersive materials may prevent us from being able to solve adispersive materials may prevent us from being able to solve a 
simple scattering problem, even if the dielectric function of the 
material is known!!!

110

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



An example: the wire mediump

2
 

 

2

2 2
, 1

/
p

zz z
z

k
c k


 


 



 , ,x y zk k kk
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Electromagnetic modes in the wire medium:

• TE-z modes: electric field is normal to the wires; 
wires are transparent to the wavewires are transparent to the wave.

 2 2 2
, /z TE x yk c k k  

• TM-z modes: magnetic field is normal to 
the wires; the mode is cut-off for long ; g
wavelengths.

 2 2 2 /k j k k c       , /z TM p x yk j k k c   

• TEM dispersionless modes (transmission line modes).TEM dispersionless modes (transmission line modes).

 , /z TEMk c
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Is the permittivity model useful to solve a scattering 
problem?p

Homogenized Wire 
Medium Slab

2 distinct 
polarizations

3 distinct 
polarizationspolarizations polarizations

 
 

2

2 2
, 1

/
p

zz zk
k


   

  2/ zc k 

The scattering problem cannot be solved

113

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



Additional Boundary Conditions
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The ABC concept

I d th t t bt i th l ti f tt i bl• In order that to obtain the solution of a scattering problem 
using homogenization methods, it is necessary to specify 
boundary condition for the internal variables that describe theboundary condition for the internal variables that describe the 
excitations responsible for the spatial dispersion effects.

• The nature of the ABC depends on the specific microstructureThe nature of the ABC depends on the specific microstructure 
of the material, and can be determined only on the basis of a 
microscopic model that describes the dynamics of the internal 
variables.

115

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



The wire medium case:

The current 
along the 

wires must 
vanish at 

the 
interface

It can be proved that this implies that the following 
additional boundary condition is verified:

0 air side wire medium sidez host zE E 
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Some considerations about the ABC:

Is the ABC compatible/equivalent with the continuity of the 
normal component of the electric displacement D?normal component of the electric displacement D?

   ;cE r E r k superposition of 

     ;c  D r k E r k

   av, ;i i i
i

cE r E r k plane wave modes

     av,, ;i i i i
i

c  D r k .E r k

Thus is not collinear with E DThus,  is not collinear with host E D

There is no contradiction/redundancy between the new ABC andThere is no contradiction/redundancy between the new ABC and 
the continuity of the normal component of D.
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Example:p

y

x

Boundary conditions:
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Example (contd.):p ( )

0.01wr a

45[deg]i 
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Application to the characterization 
of wire medium lensesof wire medium lenses

30THz
5143 746Ag j   

 215   0.2a nm a 

 2.2 Halcogenide glassh 

21.5R nm

5.93L m
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Imaging at infrared frequencies:
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Imaging at 30THz:g g

Front interface Back interface
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ABC for a WM connected to a ground plane:g p

The microscopic density of 
charge must vanish at the 

connection pointp
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ABC for a WM connected to a ground plane (contd.):g p ( )
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Validation:
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Application: HIS pp
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Application: HIS (contd.)pp ( )

eps_h=1

g=0 1a (distance between patches)g 0.1a (distance between patches)

h=5a

r=0.05a

Angle of incidence: 45 degreeg g

50

100

150

0.5 1.0 1.5 2.0 2.5

�50

50

�150

�100

Phase of  as function of a/c

127

mario.silveirinha@co.it.pt

May 5, Marrakech, 2008



It is also possible to derive ABCs for other more 
l WMcomplex WM:

Non-Connected WM

The number of required ABCs 
may be 1, 2 or 3!!!
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