NIMNIL_ISAS Print E-mail

1. Laboratory: NIMNIL_ISAS

Institute for Analytical Sciences
Albert-Einstein-Straße 9
12489 Berlin

2. Contact point:
Name: K. Hinrichs
Position: Group leader
Email: hinrichs(at)
Tel.: ++493063923530
Fax.: ++493063923544

3. Access rules:

Facilities availability for external users: 

Yes, in principle. 

Expenses reimbursement type:

Mainly non-for-profit use.

Rules on cooperation:

Case dependent, no general rule. 


4. Equipment


15I1. - Bruker Vertex 70 FTIR/Tensor 37,  400 cm-1 – 10000 cm-1   

15E1. -  VIS Ellipsometer (Sentech SE801),  Range: 240nm – 930nm, Depolarization, Multiple Angles    ISAS –Labellipsometer, Contact: C. Cobet.
15E2. - IR - Ellipsometer at Bruker Vertex 70, 400 – 4000 cm-1, multiple angle, ISAS –Labellipsometer, Contact: K. Hinrichs.
15E3. - UV-VUV-Ellipsometer, PSA-Ellipsometer, 2.5-30eV, 40-490nm, resolution 5000, fixed angle of incidence (68/45°), focus 1x1mm, max. sample size 1x1cm, 10K<T<500K, synchrotron  light source (BESSY II of the HZB-Berlin), Limited access via BESSY beam time proposals and prior approval by the station manager (Dr. C. Cobet, Leibniz-Institut für Analytische Wissenschaften).
15E4. - IR synchrotron mapping Ellipsometer, Rotating Compensator, 800 cm-1 – 3000 cm-1, focus < 1x1 mm2, Synchrotron light source (BESSY II of the HZB-Berlin), Limited access via BESSY beam time proposals and prior approval by the station manager (K. Hinrichs Leibniz-Institut für Analytische Wissenschaften).


6. Expertise


Short approaches can not be done for the use of ellipsometry. For IR range the set-up allows polarized transmission-, polarized reflection measurements and ellipsometry.

References for method and equipment:
1) "Microfocus-Infrared Synchrotron Ellipsometer for Mapping of ultrathin films", M. Gensch, N. Esser, E. H. Korte, U. Schade, K. Hinrichs, Infrared Physics and Technology 49 (1-2) (2006) 39-44.
2) "Analysis of organic films and interfacial layers by infrared spectroscopic ellipsometry", K. Hinrichs, M. Gensch, N. Esser, Applied Spectroscopy 59 (2005) 272A.
3) “Comparative study of an anisotropic polymer layer by infrared spectroscopic techniques”, K. Hinrichs, D. Tsankov, E. H. Korte, A. Röseler, K. Sahre, K.-J. Eichhorn; Appl. Spectrosc. 56, 737-743 (2002)
4) „Surface Enhanced Infrared Absorption (SEIRA): Infrared ellipsometry of Au evaporated ultrathin organic films”, K. Hinrichs, A. Röseler, K. Roodenko, J. Rappich, Applied Spectroscopy 62 (1) (2008) 121-124

5) Structure of Si(111)-In nanowires determined from midinfrared optical response“ S. Chandola, K. Hinrichs, M. Gensch, N. Esser, S. Wippermann, W. G. Schmidt, F. Bechstedt, K. Fleischer, and J. F. Mc Gilp, Phys. Rev. Letters 102, 226805 (2009).

Table: Expertise by material type and sample geometry combinations:

Materials types
Complex shape object Bulk samples or bars
Substrate layer(s) on substrate



Thin films

Isotropic materials
  Optical, R,T,P,E,A     Optical, R,T,P,E,A   Optical, R,T,P,E,A   Optical, R,T,P,E,A    
Photonic crystals              
Mesoscopic samples        

Ultrathin films,  Optical, R,T,P,E,A

Bianisotropic       Optical, R,T,P,E,A   Optical, R,T,P,E,A      
inversion symmetrical
Optical, R,T,P,E,A    Optical, R,T,P,E,A  Optical, R,T,P,E,A   Optical, R,T,P,E,A    
Active materials              
Controllable materials              
Diffraction gratings              
Scattering media              

Notation used here:

Frequency range: MHz, GHz, THz or optical
R - reflection coefficient amplitude or intensity;
T - transmission coefficient or intensity,
P - phase information;
A - reflection and transmission on many angles of incidence;
E - ellipsometry data;
D - ray velocity direction or distortion (do not mix, please, with isotropic refraction index characterization);
S - internal structure investigation with microscopy (nanoscopy);
Ch - chemical properties investigation (metal or dielectric etc.);
Chi(2)/Chi(3) of the material