The VASE setup shines linearly polarized light on the sample surface with different angles of incidence. The electric field vector is oriented obliquely with respect to the plane of the light incidence. Then the ellipticity of the reflected light from the sample surface (which obviously appears in the case of the oblique incidence as one can see from the Fresnel-Airy formulas) is analyzed for the s-polarized component of the electric field vector (component in the plane of incidence) and p-polarized component(that orthogonal to the incidence plane). The

measures the ratio of the s and p components for different angles and the existing softwares[19] fit the angular dependence of these results to the mathematically generated model of this angular dependence expected for a uniaxial layer of given thickness. This fitting deliversthe most suitable values of both components of the complex permittivity tensor at a given wavelength. Since the data is measured over the entire wavelength range the analysis of the frequency dispersion of the permittivity allows one to judge on the applicability of the VASE technique to the given nanostructure. If the dispersion turns out to be non-physical,i.e. violates physical limitations[4], the method is not applicable. For natural films it was checked that the VASE retrievalis very accurate even near the absorption peaks where the dispersion of permittivity appears[20]. Therefore it should be applicable also for electromagnetic characterization of isotropic and uniaxial nanostructured layers beyond the resonance of its constitutive elements. Instructions of the usage can be found in the Internet [21].

[1]-[4] FP7 contract No. 218696-ECONAM, Deliverables

[5] M.Sucher, Handbook of Microwave Measurements, vol2, Brooklyn Polytechnic Press1963

[6] V.N. Egorov, Instruments and Experimental Techniques 50 (2007)143

[7] G.E. Jellison, Thin Solid Films 313/314 (1998)193

[8] V.S. Merkulov, Optics and Spectroscopy 103(2007)629

[9] O. Heavens, Optical Properties Of Thin Films, Batterworth, London 1955

[10] J. Sheen, Meas. Sci. Technol. 20 (2009)042001

[11] J. Krupka, IEEE Trans. Microw. Theory Techn. 47 (1999)

[12] C.R. Simovski, S.A. Tretyakov, Phys. Rev. B 75 (2007)195111

[13] C.R. Simovski, Metamaterials 1 (2007)62

[14] C.R. Simovski, Metamaterials 2 (2008)169

[15] C.R. Simovski, Optics and Spectroscopy 107 (2008)726

[16] Kh.Chalapat, K.Sarvala, J.Li, G.S.Paraoanu, IEEE Transactions on Microwave Theory and Techniques 57 (2009)2257

[17] H. Schopper, Z. Phys. 132 (1952)146

[18] H.-C. Scheer, in: H.S. Nalwa(Ed.), Handbook of Thin Film Materials, vol. 5, Academic Press, New York 2002, 160

[19] G. E. Jellison, Thin Solid Films 450 (2004)42

[20] J. P. Rolland, J. Am. Chem. Soc. (2004)126(8), 2322

[21] www.pse.umass.edu/nano/e4.html; www.facilities.mrl.uiuc.edu/laserlab/manuals/Woollam.pdf

[22] J.H. Fendler, F.C. Meldrum, Advanced Materials, 7 (1995)607

[23] Handbook of nanophase and nanostructured materials, Z. Wang, Editor-in-Chief, Kluwer Academy, Dordrecht, Netherlands, 2009

[24] G. Kaupp, Atomic Force Microscopy, Scanning Near-field Optical Microscopy and Nanoscratching, Springer, Berlin, 2006

[25] Y.Oshikane,T.Kataoka,M.Okuda,S.Hara,H.Inoue,M.Nakano, Science and Technology of Advanced Materials 8 (2007)181

[26] P.J. Goodhew, J. Humphreys, P. Beanland, Electron microscopy and analysis, Taylor and Francis, London-New-York, 2001

[27] C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983

[28] N.Nilius, N.Ernst, H.-J.Freund, Phys.Rev.Lett.84(2000) 3994

[29] A.Hilgera, N.Cuppens, M.Tenfelde, U.Kreibig, Eur.Phys.J.D10(2000) 115

[30] V.N.Pustovit, T.V.Shahbazyan, L.G.Grechko, Eur.Phys.J.B69(2009) 369

[31] T.Vartanyan, M.Simon, F.Trager, Appl.Phys.B68(1999) 425

[32] V.P. Safonov, V.M. Shalaev, V.A. Markel, Y.E. Danilova, N.N. Lepeshkin, W. Kim, S.G. Rautian, R.L. Armstrong, Phys. Rev. Lett. 80(1998) 1102

[33] T.Vartanyan, J.Bosbach, F.Stitz, F.Trager, Appl.Phys.B73(2001) 391

[34] L.Cseh, G.H.Mehl, J.Am.Chem.Soc.128(2006) 13376

[35] L.Cseh, G.H.Mehl, J.Mat.Chemistry 17(2007) 311

[36] X.Zeng, F.Liu, A.G.Fowler, G.Ungar, L.Cseh, G.H.Mehl, J.E.Macdonald,Adv.Mater. 21(2009) 1746

[37] U.Kreibig, J.Phys.F:Metal Phys4(1974) 999

[38] P.Johnson and R.Christy, Phys.Rev.B6(1972) 4370

[39] V.N.Pustovit, T.V.Shahbazyan, Phys.Rev.B73(2006) 085408

[40] Kh.Chalapat, K.Sarvala, J.Li, G.S.Paraoanu, IEEE Transactions on Microwave Theory and Techniques 57 (2009)2257.

[41] Nanostructured Metamaterials: Exchange between experts in electromagnetics and material science, A. de Baas, Editor, European Commission, Brussels, 2010

[42] H.Schopper, Z.Phys.132(1952) 146.

[43] H.-C. Scheer, H.S. Nalwa(Ed.), Handbook of Thin Film Materials, vol. 5, Academic Press, New York 2002, 160.

[44] O. Heavens, Optical Properties Of Thin Films, Batterworth, London 1955.

[45] M. Sucher, Handbook of Microwave Measurements, Vol 2, Brooklyn Polytechnic Press, 1963.

[46] G.E. Jellison, Thin Solid Films 313/314 (1998)193.

[47] V.S. Merkulov, Optics and Spectroscopy 103 (2007)629.

[48] J. A. Woollam, B. Johs, C. Herzinger, J. Hilfiker, R. Synowicki, and C. Bungay, Overview ofVariableAngleSpectroscopicEllipsometry(VASE),PartI:BasicTheory andTypical Applications, SPIE Proceedings CR72 (1999)3-28; Part II:Advanced Applications,SPIE Proceedings CR72 (1999)29-58

[49] V.A. Markel, V.M. Shalaev, P. Zhang, W. Huyh, L. Tay, T.L. Hasslets, M. Moscovitz, Phys. Rev. B 59(1999) 10903

[50] H.Xu, J.Aizpurua, M.Kall, P.Appell, Phys.Rev.E62(2000) 4318

[51] A.I.Ekimov,A.A.Onushchenko, JETPLetters34(1981) 345

[52] N.N.Ledentzov,IEEEJ.Sel.Top.QuantumElectron.8(2002) 1015

[53] A.I.Ekimov,PhysicaScripta39(1991) 217

[54] G.T.Thompson,G.C.Wool,Nature290(1981) 230

[55] V.Ovchinnikov,A.Shevchenko,J.Nanoscience andNanotechnology 8(2008) 1

[56] A.V.Fedorov,A.V.Baranov,Y.Matsumoto,Optics andSpectroscopy 93(2002) 604

[57] M.Han,X.Gao,J.Z.Su,S.Nie,NatureBiotechnique19(2001) 631

[58] B.Persson,SurfaceScience281(1993) 153